

## 2024 Mathematics

## Higher - Paper 1

### **Question Paper Finalised Marking Instructions**

© Scottish Qualifications Authority 2024

These marking instructions have been prepared by examination teams for use by SQA appointed markers when marking external course assessments.

The information in this document may be reproduced in support of SQA qualifications only on a noncommercial basis. If it is reproduced, SQA must be clearly acknowledged as the source. If it is to be reproduced for any other purpose, written permission must be obtained from <u>permissions@sqa.org.uk</u>.



### Marking Instructions for each question

| Question |  | Generic scheme                       | Illustrative scheme                                                            | Max<br>mark |
|----------|--|--------------------------------------|--------------------------------------------------------------------------------|-------------|
| 1.       |  | • <sup>1</sup> use $m = \tan \theta$ | • <sup>1</sup> $m = \tan 30^{\circ}$                                           | 3           |
|          |  | • <sup>2</sup> evaluate exact value  | $\bullet^2 \frac{1}{\sqrt{3}}$                                                 |             |
|          |  | $\bullet^3$ determine equation       | • <sup>3</sup> eg $y = \frac{1}{\sqrt{3}}x + 4$ or $\sqrt{3}y - 4\sqrt{3} = x$ |             |

#### Notes:

1. Do not award  $\bullet^1$  for  $m = \tan^{-1} 30^\circ$ . However  $\bullet^2$  and  $\bullet^3$  are still available.

- 2. Do not penalise the omission of a degree symbol at  $\bullet^1$ .
- 3. Where candidates make no reference to a trigonometric ratio, or use an incorrect trigonometric ratio,  $\bullet^1$  and  $\bullet^2$  are unavailable. See Candidate A.
- 4.  $\bullet^3$  is only available as a consequence of attempting to use a tan ratio. See Candidate F.
- 5.  $\bullet^3$  is not available for using a gradient of 30.
- 6. At •<sup>3</sup> accept any rearrangement of a candidate's equation where constant terms have been simplified.

7. Accept 
$$y-4 = \frac{1}{\sqrt{3}}(x)$$
 but not  $y-4 = \frac{1}{\sqrt{3}}(x-0)$  for •<sup>3</sup>.

### **Commonly Observed Responses:**

| Candidate A - no tri          | g ratio            | Candidate B                          |           | Candidate C            |                    |
|-------------------------------|--------------------|--------------------------------------|-----------|------------------------|--------------------|
| $m = \frac{1}{\sqrt{2}}$      | ●1 ▲ ●2 ✓ 2        | $m = \tan \theta$                    | ●1 🔨      | $m = \tan \theta$      | •1 <b>^</b>        |
| $\sqrt{3}$                    |                    | $y = \frac{1}{\sqrt{3}}x + 4$        | ●2 ✓ ●3 ✓ | $y = \sqrt{3x+4}$      | ●2 🗶 ●3 🗶          |
| $y = \frac{1}{\sqrt{3}}x + 4$ | • <sup>3</sup> • 1 | ,                                    |           |                        |                    |
| Candidate D                   |                    | Candidate E - no re                  | ference   | Candidate F - not us   | sing tan           |
| $m = \tan \theta = 30$        | ●1 🗶               | to m                                 |           | $m = \sin 30^{\circ}$  | •1 🗶               |
| $m = \frac{1}{\sqrt{3}}$      | ● <sup>2</sup> ✓ 1 | $\tan 30^\circ = \frac{1}{\sqrt{3}}$ | •2 🗸      | $m=\frac{1}{2}$        | • <sup>2</sup> ✓ 2 |
| $y = \frac{1}{\sqrt{3}}x + 4$ | ● <sup>3</sup> ✓ 1 | $y-4=\frac{1}{\sqrt{3}}(x-0)$        | ●1 🗸      | $y = \frac{1}{2}x + 4$ | • <sup>3</sup> ✓ 2 |
|                               |                    | $y = \frac{1}{\sqrt{3}}x + 4$        | •3 🗸      |                        |                    |

| Q                            | uestic                                                                            | on                 | Generic scheme                                                                       | Illustrative scheme                                                       | Max<br>mark |  |  |  |
|------------------------------|-----------------------------------------------------------------------------------|--------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------|--|--|--|
| 2.                           | (a)                                                                               |                    | • <sup>1</sup> calculate second term                                                 | • <sup>1</sup> 16                                                         | 1           |  |  |  |
| Note                         | es:                                                                               |                    |                                                                                      |                                                                           |             |  |  |  |
| 1. (                         | 1. Candidates who use $u_0 = 20$ and then calculate $u_1 = 16$ gain $\bullet^1$ . |                    |                                                                                      |                                                                           |             |  |  |  |
| Com                          | monly                                                                             | / Obse             | erved Responses:                                                                     |                                                                           |             |  |  |  |
|                              |                                                                                   | 1                  |                                                                                      |                                                                           | Γ           |  |  |  |
|                              | (b)                                                                               | (i)                | • <sup>2</sup> communicate condition for limit to exist                              | it • <sup>2</sup> a limit exists as $-1 < \frac{1}{5} < 1$                | 1           |  |  |  |
|                              |                                                                                   | (ii)               | • <sup>3</sup> know how to calculate a limit                                         | • <sup>3</sup> $\frac{12}{1-\frac{1}{5}}$ or $L = \frac{1}{5}L + 12$      | 2           |  |  |  |
|                              |                                                                                   |                    | • <sup>4</sup> calculate limit                                                       | • <sup>4</sup> 15                                                         |             |  |  |  |
| Note                         | Notes:                                                                            |                    |                                                                                      |                                                                           |             |  |  |  |
| 2. F                         | or • <sup>2</sup> a                                                               | accep              | t:                                                                                   |                                                                           |             |  |  |  |
|                              | any                                                                               | of '               | $-1 < \frac{1}{5} < 1'$ or $\left(\frac{1}{5}\right) < 1'$ or $0 < \frac{1}{5} < 1'$ | with no further comment;                                                  |             |  |  |  |
|                              | or s                                                                              | staten             | nents such as:                                                                       |                                                                           |             |  |  |  |
|                              | ، <u>1</u><br>5                                                                   | lies be            | etween –1 and 1' or $\frac{1}{5}$ is a proper                                        | fraction'.                                                                |             |  |  |  |
| 3. •                         | <sup>2</sup> is not                                                               | t avail            | able for:                                                                            |                                                                           |             |  |  |  |
|                              | ' _1                                                                              | 1<1<<              | (1' or $\frac{1}{-1} < 1$ '                                                          |                                                                           |             |  |  |  |
|                              |                                                                                   | 5                  | 5                                                                                    |                                                                           |             |  |  |  |
|                              | or s                                                                              | staten             | nents such as:<br>1                                                                  |                                                                           |             |  |  |  |
|                              | 'lt                                                                               | is bet             | ween –1 and 1.' or $\frac{1}{5}$ is a fraction                                       | · .                                                                       |             |  |  |  |
| 4. (                         | Candid                                                                            | ates v             | who state $-1 < a < 1$ can only gain •                                               | <sup>2</sup> if it is explicitly stated that $a = \frac{1}{5}$ .          |             |  |  |  |
| 5. C                         | Do not                                                                            | accep              | ot $L = \frac{b}{1-a}$ with no further working                                       | g for ● <sup>3</sup> .                                                    |             |  |  |  |
| 6. •                         | <sup>3</sup> and                                                                  | ● <sup>4</sup> are | not available to candidates who con                                                  | jecture $L = 15$ following the calculation of                             | further     |  |  |  |
| t                            | erms i                                                                            | in the             | sequence.                                                                            |                                                                           |             |  |  |  |
| /. F                         | 7. For $L=15$ with no working award 0/2.                                          |                    |                                                                                      |                                                                           |             |  |  |  |
|                              |                                                                                   |                    |                                                                                      |                                                                           |             |  |  |  |
| Commonly Observed Responses: |                                                                                   |                    |                                                                                      |                                                                           |             |  |  |  |
| Cano                         | didate<br>1                                                                       | Α                  |                                                                                      | <b>Candidate B</b> - no explicit reference to $a$<br>$u_{n+1} = au_n + b$ |             |  |  |  |
| u =                          | 5                                                                                 |                    |                                                                                      | $u = \frac{1}{2}u + 12$                                                   |             |  |  |  |
| -1<                          | a<1                                                                               | so a li            | mit exists $\bullet^2 \checkmark$                                                    | $u_{n+1} = \frac{1}{5}u_n + 12$                                           |             |  |  |  |
|                              | $-1 < a < 1$ so a limit exists $\bullet^2$ $\land$                                |                    |                                                                                      |                                                                           |             |  |  |  |

| Question                         |                    | on                 | Generic scheme                                |                 | Illustrative scheme                                                                  | Max<br>mark        |  |
|----------------------------------|--------------------|--------------------|-----------------------------------------------|-----------------|--------------------------------------------------------------------------------------|--------------------|--|
| 3.                               |                    |                    | • <sup>1</sup> start to differentiate         |                 | • <sup>1</sup> $7(5x^2+3)^6$                                                         | 2                  |  |
|                                  |                    |                    | • <sup>2</sup> complete differentiation       | 1               | • <sup>2</sup> × 10 $x$                                                              |                    |  |
| Note                             | es:                |                    |                                               |                 |                                                                                      |                    |  |
| 1. •                             | <sup>1</sup> is av | warde              | d for the appearance of $7(5)$                | $(x^2+3)^6$     |                                                                                      |                    |  |
| 2. F                             | or 70              | $x(5x^2)$          | $(2+3)^6$ with no working, aware              | d 2/2.          |                                                                                      |                    |  |
| 3. A                             | Accept             | t 7u <sup>6</sup>  | where $u = 5x^2 + 3$ for $\bullet^1$ .        |                 |                                                                                      |                    |  |
| 4. C                             | )o not             | awaı               | d $\bullet^2$ where the answer includ         | les ' $+c$      | '.                                                                                   |                    |  |
| Com                              | monly              | y Obs              | erved Responses:                              |                 |                                                                                      |                    |  |
| Cano                             | didate             | e A - d            | lifferentiating over two line                 | s Ca            | ndidate B - poor notation                                                            |                    |  |
| 7(5.                             | $(x^2 + 3)$        | ) <sup>6</sup>     | • <sup>1</sup> 🗸                              | y <del>:</del>  | $=(5x^2+3)^7$ $y=5x^2+3$                                                             |                    |  |
| 7(5:                             | $(x^2+3)$          | ) <sup>6</sup> ×10 | x • <sup>2</sup> ^                            |                 | $\frac{dy}{dx} = 10x$                                                                |                    |  |
|                                  |                    |                    |                                               | $\frac{dy}{dx}$ | $\int_{x}^{x} = 7\left(5x^{2}+3\right)^{6} \times 10x \qquad \bullet^{1} \checkmark$ | • <sup>2</sup> •   |  |
| Candidate C - poor communication |                    |                    | ooor communication                            | Ca              | Candidate D - insufficient evidence for • <sup>1</sup>                               |                    |  |
| <i>y</i> =                       | $(5x^2 +$          | - 3)′              |                                               | 70              | $(5x^2+3)^6$ •1 •                                                                    | •² <b>x</b>        |  |
| <i>y</i> = 7                     | $7(5x^2)$          | $+3)^{6}$          | $\times 10x$ $\bullet^1 \checkmark \bullet^2$ | ✓ or<br>35      | $\left(5x^2+3\right)^6$ • <sup>1</sup> s                                             | t ● <sup>2</sup> ¥ |  |

| Question                                        |                   | Generic scheme                       | Illustrative scheme                                                                                                                                                                               | Max<br>mark |
|-------------------------------------------------|-------------------|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 4.                                              |                   | Method 1                             | Method 1                                                                                                                                                                                          | 2           |
|                                                 |                   | • <sup>1</sup> interpret ratio       | $\bullet^{1} \begin{pmatrix} 2\\ 4\\ -4 \end{pmatrix}, \begin{pmatrix} -2\\ -4\\ 4 \end{pmatrix}, \begin{pmatrix} 3\\ 6\\ -6 \end{pmatrix} \text{ or } \begin{pmatrix} -3\\ -6\\ 6 \end{pmatrix}$ |             |
|                                                 |                   | • <sup>2</sup> find coordinates of R | • <sup>2</sup> (-4,5,-2)                                                                                                                                                                          |             |
|                                                 |                   | Method 2                             | Method 2                                                                                                                                                                                          |             |
|                                                 |                   | • <sup>1</sup> interpret ratio       | • <sup>1</sup> eg $\overrightarrow{PR} = \frac{2}{5}\overrightarrow{PQ}$ , $\overrightarrow{QR} = \frac{3}{5}\overrightarrow{QP}$ or                                                              |             |
|                                                 |                   |                                      | $\overrightarrow{PR} = \frac{2}{3}\overrightarrow{RQ}$                                                                                                                                            |             |
|                                                 |                   | • <sup>2</sup> find coordinates of R | • <sup>2</sup> (-4,5,-2)                                                                                                                                                                          |             |
|                                                 |                   | Method 3                             | Method 3                                                                                                                                                                                          |             |
|                                                 |                   | • <sup>1</sup> use section formula   | $\bullet^1  \frac{1}{5} (3\mathbf{p} + 2\mathbf{q})$                                                                                                                                              |             |
|                                                 |                   | • <sup>2</sup> find coordinates of R | • <sup>2</sup> (-4,5,-2)                                                                                                                                                                          |             |
| Notes:                                          |                   | ×                                    |                                                                                                                                                                                                   |             |
| 1. For (-                                       | -4,5,-2           | ) without working award 2/2.         |                                                                                                                                                                                                   |             |
| 2. For (-                                       | -4<br>5 wit<br>-2 | thout working award 1/2.             |                                                                                                                                                                                                   |             |
| 3. For                                          | (-3,7,-           | –4) (ratio of 3:2 with working) awar | d 1/2. See Candidate A.                                                                                                                                                                           |             |
| (-                                              | -3)               |                                      |                                                                                                                                                                                                   |             |
| 4. For                                          | 7 │ wit<br>_4 )   | thout working award 0/2.             |                                                                                                                                                                                                   |             |
| 6                                               |                   |                                      |                                                                                                                                                                                                   |             |
| Common                                          |                   | erved Responses:                     |                                                                                                                                                                                                   |             |
| $\overrightarrow{andidat}$                      | e A               | 1                                    | Candidate B                                                                                                                                                                                       |             |
| $PR = -PQ \qquad \bullet' \times$               |                   | •' x                                 | $\frac{\Gamma K}{RO} = \frac{2}{3}$ • 1 ✓                                                                                                                                                         |             |
| $R = (-3, 7, -4) \qquad \bullet^2 \checkmark_1$ |                   |                                      | 3PR = 2RO                                                                                                                                                                                         |             |
|                                                 |                   |                                      | $3(\mathbf{r}-\mathbf{p})=2(\mathbf{q}-\mathbf{r})$                                                                                                                                               |             |
|                                                 |                   |                                      | $5\mathbf{r} = 2\mathbf{q} + 3\mathbf{p}$                                                                                                                                                         |             |
|                                                 |                   |                                      | Leading to correct answer of $\left( \begin{array}{c} 1 \\ 1 \\ 2 \end{array} \right)$                                                                                                            |             |
|                                                 |                   |                                      | $K = (-4, 5, -2) \qquad \bullet^2 \checkmark$                                                                                                                                                     |             |

| Question                                                                                | Generi             | c scheme         |                                                            | Illustrative | e scheme | Max<br>mark |
|-----------------------------------------------------------------------------------------|--------------------|------------------|------------------------------------------------------------|--------------|----------|-------------|
| 4. (continued)                                                                          |                    |                  | ·                                                          |              |          |             |
| Candidate C                                                                             |                    |                  | Candid                                                     | ate D<br>2 ) |          |             |
| $\overrightarrow{PQ} = \begin{bmatrix} 10\\ -10 \end{bmatrix}$                          |                    |                  | $\overrightarrow{PR} = \begin{bmatrix} \\ - \end{bmatrix}$ | 4            | • 1 🗸    |             |
| $R = \begin{pmatrix} 2 \\ 4 \\ -4 \end{pmatrix}$                                        |                    | •1 ✓             | R(-8,-3                                                    | 3,6)         | • 2 🗶    |             |
| $ R = \begin{pmatrix} -6\\1\\2 \end{pmatrix} + \begin{pmatrix} 2\\4\\-4 \end{pmatrix} $ |                    |                  |                                                            |              |          |             |
| $R = \begin{pmatrix} -4\\5\\-2 \end{pmatrix}$                                           |                    |                  |                                                            |              |          |             |
| R(-4,5,-2)                                                                              |                    | •² ✓             |                                                            |              |          |             |
| Candidate E - st<br>values                                                              | epping out using a | absolute         |                                                            |              |          |             |
| 2                                                                                       | : 3<br>5           |                  |                                                            |              |          |             |
| -6 <u>2</u>                                                                             | or 3 -1            |                  |                                                            |              |          |             |
| 1                                                                                       | 10                 |                  |                                                            |              |          |             |
| 4                                                                                       | or 6<br>10         |                  |                                                            |              |          |             |
|                                                                                         | or 6               | •1 ✓             |                                                            |              |          |             |
| R(-4,5,-2)                                                                              |                    | • <sup>2</sup> ✓ |                                                            |              |          |             |

| Q   | uesti                                                                                                                                                        | on                | Generic scheme                                              | Illustrative scheme                                                         | Max<br>mark |  |  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------|-------------|--|--|
| 5.  |                                                                                                                                                              |                   | Method 1                                                    | Method 1                                                                    | 3           |  |  |
|     |                                                                                                                                                              |                   | • <sup>1</sup> equate composite function to $x$             | • <sup>1</sup> $h(h^{-1}(x)) = x$                                           |             |  |  |
|     |                                                                                                                                                              |                   | • <sup>2</sup> write $h(h^{-1}(x))$ in terms of $h^{-1}(x)$ | • <sup>2</sup> $2(h^{-1}(x))^3 - 7 = x$                                     |             |  |  |
|     |                                                                                                                                                              |                   | • <sup>3</sup> state inverse function                       | • <sup>3</sup> $h^{-1}(x) = \sqrt[3]{\frac{x+7}{2}}$                        |             |  |  |
|     |                                                                                                                                                              |                   | Method 2                                                    | Method 2                                                                    |             |  |  |
|     |                                                                                                                                                              |                   | • <sup>1</sup> write as $y = h(x)$ and start to rearrange   | • <sup>1</sup> $y = h(x) \Longrightarrow x = h^{-1}(y)$<br>$y + 7 = 2x^{3}$ |             |  |  |
|     |                                                                                                                                                              |                   | • <sup>2</sup> express x in terms of y                      | • <sup>2</sup> $x = \sqrt[3]{\frac{y+7}{2}}$                                |             |  |  |
|     |                                                                                                                                                              |                   | • <sup>3</sup> state inverse function                       | • <sup>3</sup> $h^{-1}(y) = \sqrt[3]{\frac{y+7}{2}}$                        |             |  |  |
|     |                                                                                                                                                              |                   |                                                             | $\Rightarrow h^{-1}(x) = \sqrt[3]{\frac{x+7}{2}}$                           |             |  |  |
| Not | es:                                                                                                                                                          |                   |                                                             | · ·                                                                         |             |  |  |
| 1.  | In met                                                                                                                                                       | thod '            | 1, accept $2(h^{-1}(x))^3 - 7 = x$ for $\bullet^1$ ar       | nd •².                                                                      |             |  |  |
| 2.  | In met                                                                                                                                                       | thod 2            | 2, accept ' $y + 7 = 2x^3$ ' without refer                  | ence to $y = h(x) \Longrightarrow x = h^{-1}(y)$ at $\bullet^1$ .           |             |  |  |
| 3.  | In met                                                                                                                                                       | thod 2            | 2, accept $h^{-1}(x) = \sqrt[3]{\frac{x+7}{2}}$ without re  | eference to $h^{-1}(y)$ at $\bullet^3$ .                                    |             |  |  |
| 4.  | <ol> <li>In method 2, beware of candidates with working where each line is not mathematically<br/>equivalent. See candidates A and B for example.</li> </ol> |                   |                                                             |                                                                             |             |  |  |
| 5.  | . At $\bullet^3$ stage, accept $h^{-1}$ written in terms of any dummy variable.                                                                              |                   |                                                             |                                                                             |             |  |  |
|     | For example $h^{-1}(y) = \sqrt[3]{\frac{y+7}{2}}$ .                                                                                                          |                   |                                                             |                                                                             |             |  |  |
| 6.  | $y = \sqrt[3]{2}$                                                                                                                                            | $\frac{x+7}{2}$   | does not gain ●³.                                           |                                                                             |             |  |  |
| 7.  | $h^{-1}(x)$                                                                                                                                                  | $) = \sqrt[3]{2}$ | $\frac{\overline{x+7}}{2}$ with no working gains 3/3.       |                                                                             |             |  |  |

| Question                                                                         | Generic scheme                                 | Illustrative scheme                                   | Max<br>mark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------------------------------------------------------------------------------|------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5. (continued)                                                                   |                                                |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Commonly Obs                                                                     | served Responses:                              |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Candidate A                                                                      | C                                              | andidate B                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $h(x) = 2x^3 - 7$                                                                | h                                              | $v(x) = 2x^3 - 7$                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $y = 2x^3 - 7$                                                                   | y                                              | $y = 2x^3 - 7$ -                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $x = \sqrt[3]{\frac{y+7}{2}}$                                                    | • <sup>1</sup> • • <sup>2</sup> • <sup>x</sup> | $x = 2y^3 - 7$ $-1$ $\bullet^1$                       | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $v = 3\sqrt{\frac{x+7}{x+7}}$                                                    | y                                              | $y = \sqrt[3]{\frac{x+7}{2}} \qquad \qquad \bullet^2$ | <b>√</b> 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $\sqrt{\frac{1}{1}}$ $\sqrt{\frac{1}{1}}$ $\sqrt{\frac{1}{1}}$                   | - h                                            | $e^{-1}(x) = \sqrt[3]{\frac{x+7}{2}}$ • <sup>3</sup>  | ✓ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $h^{-1}(x) = \sqrt[3]{\frac{x+y}{2}}$                                            | -                                              | 1 2                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Candidate C                                                                      | c                                              | andidate D - Method 1                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $x = 2h(x)^3 - 7$                                                                | • <sup>1</sup> × h                             | $u(h^{-1}(x)) = 2(h^{-1}(x))^3 - 7$ • <sup>2</sup>    | <ul> <li>Image: A second s</li></ul> |
| $h(x) = \sqrt[3]{\frac{x+7}{2}}$                                                 | • <sup>2</sup> ✓ 1 x                           | $x = 2(h^{-1}(x))^3 - 7$ • <sup>1</sup>               | <b>~</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $h^{-1}(x) = \sqrt[3]{\frac{x+7}{2}}$                                            | $h$ $\bullet^3 \checkmark_1$                   | $e^{-1}(x) = \sqrt[3]{\frac{x+7}{2}}$ • <sup>3</sup>  | <b>~</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Candidate E                                                                      | C                                              | andidate F - BEWARE of incorrect no                   | tation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $x \rightarrow x^3 \rightarrow 2x^3$                                             | $\rightarrow 2x^3 - 7 = h(x) \qquad \qquad h$  | $e'(x) = \bullet^3 \cdot$                             | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $ \begin{array}{c} \times 2 \rightarrow - \\ \cdot + 7 \rightarrow \end{array} $ | 7<br>.÷2 ● <sup>1</sup> ✓                      |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\sqrt{\frac{x+7}{3}}$                                                           | • <sup>2</sup> ✓                               |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| V 2                                                                              | _                                              |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $h^{-1}(x) = \sqrt[3]{\frac{x+7}{2}}$                                            | - ● <sup>3</sup> ✓                             |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

| Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | uestic                                         | n                        | Generic scheme                                            |                                                         | Illustrative scheme                                                     | Max<br>mark |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--------------------------|-----------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------|-------------|--|--|--|
| 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (a)                                            | (i)                      | • <sup>1</sup> find value of $\cos p$                     |                                                         | •1 $\cos p = \frac{2}{\sqrt{5}}$ stated or<br>implied by • <sup>2</sup> | 3           |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                |                          | • <sup>2</sup> substitute into the formula for $\sin 2p$  |                                                         | • <sup>2</sup> $2 \times \frac{1}{\sqrt{5}} \times \frac{2}{\sqrt{5}}$  |             |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                |                          | • <sup>3</sup> simplify answer                            |                                                         | $\bullet^3 \frac{4}{5}$                                                 |             |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                | (ii)                     | • <sup>4</sup> evaluate $\cos 2p$                         |                                                         | • $\frac{3}{5}$                                                         | 1           |  |  |  |
| Note                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | es:                                            |                          |                                                           |                                                         |                                                                         |             |  |  |  |
| <ol> <li>Evidence for •<sup>1</sup> may appear in (a)(ii).</li> <li>Where a candidate substitutes an incorrect value for cos p at •<sup>2</sup>, •<sup>2</sup> may be awarded if the candidate has previously stated this incorrect value or it can be implied by a diagram or Pythagoras calculation. See Candidates A and B.</li> <li>Where a candidate explicitly states a value for cos p, subsequent working must follow from that value for •<sup>2</sup> to be awarded.</li> <li>•<sup>3</sup> is only available as a consequence of substituting into a valid formula at •<sup>2</sup>.</li> <li>Do not penalise trigonometric ratios which are less than -1 or greater than 1 throughout this question.</li> </ol> |                                                |                          |                                                           |                                                         |                                                                         |             |  |  |  |
| Cand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | idate /                                        | A - in                   | correct use of Pythagoras                                 | Candidat                                                | e B - no evidence of Pythagoras                                         |             |  |  |  |
| 1/5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <sup>2</sup> _ 1 <sup>2</sup> -                | 6                        | _1 <u>k</u>                                               |                                                         |                                                                         |             |  |  |  |
| 2×-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\frac{1}{5} \times \frac{\sqrt{6}}{\sqrt{5}}$ |                          | • <sup>2</sup> ✓ 1                                        | $2 \times \frac{1}{\sqrt{5}} \times \frac{1}{\sqrt{5}}$ | $\frac{\sqrt{6}}{\sqrt{5}}$ • <sup>2</sup> ×                            |             |  |  |  |
| $\frac{2\sqrt{6}}{5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                                              |                          | • <sup>3</sup> ✓ 1                                        | $\frac{2\sqrt{6}}{5}$                                   | • <sup>3</sup> ✓ <sub>1</sub>                                           |             |  |  |  |
| Cand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | idate                                          | C                        |                                                           |                                                         |                                                                         |             |  |  |  |
| 2×si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $n\frac{1}{\sqrt{5}}$ ×                        | $\cos\frac{1}{\sqrt{2}}$ | $\frac{2}{5}$ $\bullet^1 \checkmark \bullet^2 \mathbf{x}$ |                                                         |                                                                         |             |  |  |  |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                |                          | • <sup>3</sup> ¥                                          |                                                         |                                                                         |             |  |  |  |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (b)                                            |                          | • <sup>5</sup> evaluate $\sin 4p$                         | 1                                                       | • <sup>5</sup> $\frac{24}{25}$                                          | 1           |  |  |  |
| Note                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | es:                                            |                          |                                                           |                                                         |                                                                         |             |  |  |  |
| 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <sup>5</sup> is on                             | ly ava                   | ailable for an answer expresse                            | d as a sin                                              | gle fraction.                                                           |             |  |  |  |
| Com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | monly                                          | Obse                     | erved Responses:                                          |                                                         |                                                                         |             |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                |                          |                                                           |                                                         |                                                                         |             |  |  |  |

| 7.   Method 1                                                                                                            | 4 |
|--------------------------------------------------------------------------------------------------------------------------|---|
| • <sup>1</sup> substitute for y<br>• <sup>1</sup> $x^2 + (2x)^2 - 14x - 8(2x) + 45 = 0$                                  |   |
| • <sup>2</sup> write in standard quadratic form<br>• <sup>2</sup> $5x^2 - 30x + 45 = 0$                                  |   |
| • <sup>3</sup> determine <i>x</i> -coordinate • <sup>3</sup> 3                                                           |   |
| • <sup>4</sup> determine <i>y</i> -coordinate • <sup>4</sup> 6                                                           |   |
| Method 2 Method 2                                                                                                        |   |
| • <sup>1</sup> substitute for x $ = 1 \left( \frac{y}{2} \right)^2 + y^2 - 14 \left( \frac{y}{2} \right) - 8y + 45 = 0 $ |   |
| • <sup>2</sup> write in standard quadratic form $\bullet^2 \frac{5}{4}y^2 - 15y + 45 = 0$                                |   |
| • <sup>3</sup> determine <i>y</i> -coordinate • <sup>3</sup> 6                                                           |   |
| • <sup>4</sup> determine <i>x</i> -coordinate • <sup>4</sup> 3                                                           |   |
| Method 3 Method 3                                                                                                        |   |
| • <sup>1</sup> use centre and perpendicular<br>gradient to determine equation of<br>radius through point of contact      |   |
| • <sup>2</sup> substitute for y • <sup>2</sup> $x+2(2x)=15$                                                              |   |
| • <sup>3</sup> determine <i>x</i> -coordinate $\mathbf{e}^{3}$ 3                                                         |   |
| • <sup>4</sup> determine y-coordinate                                                                                    |   |

- 1. In Methods 1 and 2, treat an absence of brackets at the •<sup>1</sup> stage as bad form only if corrected on the next line of working.
- 2. In Methods 1 and 2,  $\bullet^1$  is only available if the '=0' appears by the  $\bullet^2$  stage.
- 3. In Methods 1 and 2, if a candidate arrives at an equation which is not a quadratic  $\bullet^3$  and  $\bullet^4$  are unavailable.
- 4. Where the quadratic obtained at  $\bullet^2$  in Methods 1 and 2, does not have repeated roots  $\bullet^3$  and  $\bullet^4$  are not available.
- 5. In Method 3 accept  $y-4 = -\frac{1}{2}(x-7)$ ,  $-\frac{1}{2} = \frac{4-y}{7-x}$  or equivalent for  $\bullet^1$ .
- 6. In Method 3  $\cdot^2$ ,  $\cdot^3$  and  $\cdot^4$  are unavailable to candidates who find the equation of any other line.
- 7. For (3,6) without working, award 0/4.
- 8. For answer of (3,6) verified in both equations, or (3,6) generated by the linear equation and verified in the equation of the circle, award 4/4.

| Question                       | Generic scheme                   |  | Illustrative scheme | Max<br>mark |
|--------------------------------|----------------------------------|--|---------------------|-------------|
| 7. (continued)                 |                                  |  |                     |             |
| Commonly Obse                  | erved Responses:                 |  |                     |             |
| Candidate A - su<br>the circle | ubstitution into the equation of |  |                     |             |
| x = 3                          | •3 🗸                             |  |                     |             |
| $(3)^2 + y^2 - 14(3)$          | )-8y+45=0                        |  |                     |             |
| $y^2 - 8y + 12 = 0$            |                                  |  |                     |             |
| (y-2)(y-6) =                   | 0                                |  |                     |             |
| <i>y</i> = 6                   | •4 🗸                             |  |                     |             |
| no need t                      | to explicitly consider $y = 2$   |  |                     |             |
| However,                       |                                  |  |                     |             |
| (3,6) and (3,2)                | •4 🗴                             |  |                     |             |

| Question |  | n | Generic scheme                                        | Illustrative scheme                                                        | Max<br>mark |
|----------|--|---|-------------------------------------------------------|----------------------------------------------------------------------------|-------------|
| 8.       |  |   | • <sup>1</sup> use discriminant                       | • <sup>1</sup> $(m-4)^2 - 4(1)(2m-3)$                                      | 4           |
|          |  |   | • <sup>2</sup> apply condition                        | • <sup>2</sup> $(m-4)^2 - 4(1)(2m-3) < 0$                                  |             |
|          |  |   | • <sup>3</sup> identify roots of quadratic expression | • <sup>3</sup> 2, 14                                                       |             |
|          |  |   | • <sup>4</sup> state range with justification         | • <sup>4</sup> 2 < <i>m</i> < 14 with eg labelled sketch or table of signs |             |

Notes:

1. At  $\bullet^1$ , treat the inconsistent use of brackets: For example  $m-4^2-4(1)(2m-3)$  or

 $(m-4)^2 - 4 \times 1 \times 2m - 3$  as bad form only if the candidate deals with the unbracketed terms correctly in the next line of working.

- 2. Where candidates express *a*, *b* and *c* in terms of *m*, and then state  $b^2 4ac < 0$ , award  $\bullet^2$ .
- 3. If candidates have the condition 'discriminant > 0', 'discriminant  $\leq$  0' or 'discriminant  $\geq$  0', then  $\bullet^2$  is lost but  $\bullet^3$  and  $\bullet^4$  are available.
- 4. Ignore the appearance of  $b^2 4ac = 0$  where the correct condition has subsequently been applied.
- 5. If candidates only work with the condition 'discriminant = 0', then  $\bullet^2$  and  $\bullet^4$  are unavailable.
- 6. Accept the appearance of 2 and 14 within inequalities for  $\bullet^3$ .
- 7. At •<sup>4</sup> accept "m > 2 and m < 14" or "m > 2, m < 14" together with the required justification.
- 8. For the appearance of x in any expression of the discriminant, no further marks are available.

| Commonly Observed Responses:                             |                                                                                  |
|----------------------------------------------------------|----------------------------------------------------------------------------------|
| Candidate A - no expressions for $a, b$ and $c$          | Candidate B                                                                      |
| No real roots $b^2 - 4ac < 0$                            | _                                                                                |
| $m^2 - 16m + 28 = 0$ • <sup>1</sup> $\checkmark$         | $(m-4)^2 - 4(1)(2m-3)$ • <sup>1</sup> $\checkmark$                               |
| $m = 2, m = 14$ • <sup>3</sup> $\checkmark$              | $m^2 - 16m + 28 = 0$                                                             |
| $2 < m < 14$ $\bullet^2 \checkmark \bullet^4 \checkmark$ | $m = 2, m = 14$ • <sup>3</sup> $\checkmark$                                      |
| In this case • <sup>2</sup> is only available            | $b^2 - 4ac < 0$ $2 < m < 14$ $\bullet^2 \checkmark \bullet^4 \checkmark$         |
| where • is awarded                                       | In this case • <sup>2</sup> is only available<br>where • <sup>4</sup> is awarded |

| Question                      | Generic scheme     |                                                                           |              | Illustrative scheme |       |                    | Max<br>mark |
|-------------------------------|--------------------|---------------------------------------------------------------------------|--------------|---------------------|-------|--------------------|-------------|
| 8. (continued)                | -                  |                                                                           | •            |                     |       |                    |             |
| Candidate C                   |                    |                                                                           | Can          | didate D            |       |                    |             |
| $(m-4)^2 - 4(1)(2)$           | 2m-3)              | ● <sup>1</sup> ✓                                                          | ( <i>m</i> - | $(-4)^2 - 4(1)(2)$  | 2m-3) | • <sup>1</sup> 🗸   |             |
| $b^2 - 4ac = 0$               |                    |                                                                           |              |                     |       |                    |             |
| $m^2 - 16m + 28 =$            | 0                  |                                                                           | $m^2$ ·      | -16m + 28 = 0       | 0     | • <sup>2</sup> 🗴   |             |
| m = 2, m = 14                 |                    | • <sup>3</sup> ✓                                                          | <i>m</i> =   | 2, <i>m</i> = 14    |       | •3 🗸               |             |
| $m^2 - 16m + 28 < 2 < m < 14$ |                    | $\bullet^2 \checkmark$<br>$\bullet^4 \checkmark$                          | 2 < 2        | <i>m</i> < 14       | 2 14  | ● <sup>4</sup> ✓ 2 |             |
| Candidate E - n               | ot solving a quadr | atic                                                                      |              |                     |       |                    |             |
| $m - 4^2 - 4(1)(2m)$          | (n-3) < 0          | $\bullet^1 \mathbf{x} \bullet^2 \mathbf{\checkmark} \bullet^3 \mathbf{x}$ |              |                     |       |                    |             |
| -7m-4 < 0                     |                    |                                                                           |              |                     |       |                    |             |
| $m > -\frac{4}{7}$            |                    | • <sup>4</sup> ✓ 2                                                        |              |                     |       |                    |             |

| Question                                                                                                                                                                                           | Generic scheme                                                                                                                                                                                                                                                                                                                                                                                                   | Illustrative scheme                                                                                                                                                                                                                                                                        | Max<br>mark             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| 9.                                                                                                                                                                                                 | <b>Method 1</b><br>• <sup>1</sup> apply $\log_a x + \log_a y = \log_a xy$                                                                                                                                                                                                                                                                                                                                        | Method 1<br>• $\log_a(5 \times 80)$ stated or<br>implied by • <sup>3</sup>                                                                                                                                                                                                                 | 3                       |
|                                                                                                                                                                                                    | • <sup>2</sup> apply $m \log_a x = \log_a x^m$                                                                                                                                                                                                                                                                                                                                                                   | • <sup>2</sup> $-\log_a 10^2$ stated or<br>implied by • <sup>3</sup>                                                                                                                                                                                                                       |                         |
|                                                                                                                                                                                                    | • <sup>3</sup> apply $\log_a x - \log_a y = \log_a \frac{x}{y}$ and                                                                                                                                                                                                                                                                                                                                              | $\bullet^3 \log_a 4$                                                                                                                                                                                                                                                                       |                         |
|                                                                                                                                                                                                    | express in required form                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                            |                         |
|                                                                                                                                                                                                    | Method 2                                                                                                                                                                                                                                                                                                                                                                                                         | Method 2                                                                                                                                                                                                                                                                                   |                         |
|                                                                                                                                                                                                    | •1 apply $m \log_a x = \log_a x^m$                                                                                                                                                                                                                                                                                                                                                                               | • <sup>1</sup> $-\log_a 10^2$ stated or<br>implied by • <sup>3</sup>                                                                                                                                                                                                                       |                         |
|                                                                                                                                                                                                    | • <sup>2</sup> apply $\log_a x - \log_a y = \log_a \frac{x}{y}$                                                                                                                                                                                                                                                                                                                                                  | • <sup>2</sup> + $\log_a \left(\frac{80}{10^2}\right)$ stated or<br>implied by • <sup>3</sup>                                                                                                                                                                                              |                         |
|                                                                                                                                                                                                    | • <sup>3</sup> apply $\log_a x + \log_a y = \log_a xy$<br>and express in required form                                                                                                                                                                                                                                                                                                                           | • <sup>3</sup> $\log_a 4$                                                                                                                                                                                                                                                                  |                         |
| Notes:                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                            |                         |
| <ol> <li>Where an e</li> <li>Each line of<br/>observed re</li> <li>Where cance</li> <li>Where cance</li> <li>Do not pena</li> <li>Correct ans</li> <li>Where cance</li> <li>Using 5+log</li> </ol> | rror at the $\bullet^1$ or $\bullet^2$ stage leads to a non-if<br>f working must be equivalent to the line<br>esponses.<br>didates apply the laws of logarithms in the<br>didates do not consider the '2', a maxim<br>alise the omission of the base of the logative<br>wer with no working, award 3/3.<br>didates form an invalid equation, $\bullet^1$ and<br>${}_a 80-2\log_a 10$ on one side of the equation | integer value for $k$ , $\bullet^3$ is still available.<br>above within a valid strategy. See com<br>ne incorrect order see Candidates A and<br>um of 1/3 is available. See Candidate C<br>arithm.<br>$\bullet^2$ may only be awarded for working wit<br>on; $\bullet^3$ is not available. | monly<br>I B.<br><br>.h |
| Commonly Obs                                                                                                                                                                                       | served Responses:                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                          |                         |
| Candidate A<br>$\log_a 5 + 2\log_a \left(\frac{2}{3}\right)$                                                                                                                                       | $\left(\frac{30}{10}\right)$                                                                                                                                                                                                                                                                                                                                                                                     | Candidate B<br>$\log_a 400 - 2\log_a 10$<br>$2\log_a \left(\frac{400}{2}\right)$                                                                                                                                                                                                           |                         |
| $2\log_a\left(\frac{5\times80}{10}\right)$                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                  | $\frac{\log_a}{\log_a(40)^2}$                                                                                                                                                                                                                                                              |                         |
| $\log_a (40)^2$                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                  | $\log_a 1600$                                                                                                                                                                                                                                                                              |                         |
| $\log_a 1600$                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                  | Award 2/3                                                                                                                                                                                                                                                                                  |                         |
| Award 1/3                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                            |                         |
|                                                                                                                                                                                                    | ignoring the 2<br>                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                            |                         |
| $\log_a 5 + \log_a \frac{80}{10}$                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                            |                         |
| $\log_a 40$                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                            |                         |
| Award 1/3                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                            |                         |

| Q              | uestic | on                | Generic scheme                                                      |           | Illustrative scheme                                                                                                                                        | Max<br>mark |
|----------------|--------|-------------------|---------------------------------------------------------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 10.            | (a)    |                   | • <sup>1</sup> use 1 in synthetic division<br>evaluation of quartic | or in     | • <sup>1</sup><br>1 2 3 -4 -3 2<br>2<br>or $2 \times (1)^4 + 3 \times (1)^3 - 4 \times (1)^2$<br>$-3 \times (1) + 2$                                       | 2           |
|                |        |                   | • <sup>2</sup> complete division/evaluat interpret result           | ion and   | • <sup>2</sup><br>1 2 3 -4 -3 2<br>2 5 1 -2<br>2 5 1 -2 0<br>Remainder = 0 $\therefore$ (x-1) is a factor<br>or<br>$f(1) = 0 \therefore (x-1)$ is a factor |             |
| Note           | es:    | 1                 |                                                                     |           |                                                                                                                                                            | 1           |
| 1. (           | Commu  | unicat            | ion at $\bullet^2$ must be consistent w                             | ith worki | ng at that stage i.e. a candidate's work                                                                                                                   | ing         |
| r              | nust a | rrive l           | egitimately at 0 before $\bullet^2$ can                             | be award  | ded.                                                                                                                                                       |             |
| Z. 4           | Accept | any c             | of the following for •-:                                            |           |                                                                                                                                                            |             |
|                | •      | • f (1)           | =0 so $(x-1)$ is a factor'                                          |           |                                                                                                                                                            |             |
|                | •      | 'since            | e remainder $=$ 0, it is a factor'                                  |           |                                                                                                                                                            |             |
|                | •      | the '(            | )' from any method linked to t                                      | he word   | 'factor' by 'so', 'hence', $\therefore$ , $\rightarrow$ , $\Rightarrow$                                                                                    | etc.        |
| 3. E           | o not  | accep             | ot any of the following for $\bullet^2$ :                           |           |                                                                                                                                                            |             |
|                | •      |                   | le underlining the 'U' or boxing                                    | g the '0' | without comment                                                                                                                                            |             |
|                | •      | $\frac{x}{1}$     | ord 'factor' only with no link                                      |           |                                                                                                                                                            |             |
| 6              |        |                   |                                                                     | •         |                                                                                                                                                            |             |
| Com            | monty  | UDSE              | erved kesponses:                                                    |           |                                                                                                                                                            |             |
| Cane           | lidate | A - g             | rid method                                                          | Can       | aldate B - grid method                                                                                                                                     |             |
|                |        | $Zx^{-}$          | - 3                                                                 |           |                                                                                                                                                            |             |
| <i>x</i>       |        | 2x                | $5x^{\circ}$                                                        | λ         | $\frac{2x^2}{5x^2}$                                                                                                                                        |             |
|                |        | $-2x^3$           | • *                                                                 | -         | 1 $-2x^3$                                                                                                                                                  | *           |
|                |        | $2 r^{3}$         | 5 r <sup>2</sup> r _7                                               |           | $2r^{3}$ $5r^{2}$ r2                                                                                                                                       |             |
| r              |        | $\frac{2x}{2x^4}$ | $\frac{5x^{2}}{5x^{3}}$ $\frac{x^{2}}{x^{2}}$ $-2x$                 | 1         | $2x^{4}$ $5x^{3}$ $x^{2}$ $-2x$                                                                                                                            |             |
|                |        | $-\pi$            | $-5r^2$ $-r$ $2$                                                    |           | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                      |             |
|                |        | LA                | 3x x 2<br>'with no remainder'                                       |           |                                                                                                                                                            |             |
|                |        |                   |                                                                     | ∴(:       | $(x-1)(2x^3+5x^2+x-2) = 2x^4+3x^3-4x^2$                                                                                                                    | -3x+2       |
| $\therefore(x$ | -1) is | a fac             | •² ✓                                                                | (.:       | (x-1) is a factor • <sup>2</sup>                                                                                                                           | ✓           |

|     | Questic                                                                                    | on     | Generic scheme                                                                                     | Illustrative scheme                                                                                                                             | Max<br>mark |  |  |
|-----|--------------------------------------------------------------------------------------------|--------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|
| 10. | (b)                                                                                        |        | • <sup>3</sup> identify cubic and attempt to factorise                                             | • <sup>3</sup> eg<br>-1 2 5 1 -2<br>-2 -3<br>2 3<br>or<br>-2 2 5 1 -2<br>-4 -2<br>2 1                                                           | 4           |  |  |
|     |                                                                                            |        | • <sup>4</sup> find second factor                                                                  | • <sup>4</sup> eg<br>-1 2 5 1 -2<br>-2 -3 2<br>2 3 -2 0<br>leading to $(x+1)$<br>or<br>-2 2 5 1 -2<br>-4 -2 2<br>2 1 -1 0<br>leading to $(x+2)$ |             |  |  |
|     |                                                                                            |        | <ul> <li>•<sup>5</sup> identify quadratic</li> <li>•<sup>6</sup> complete factorisation</li> </ul> | • <sup>5</sup> $2x^2 + 3x - 2$ or $2x^2 + x - 1$<br>• <sup>6</sup> $(x-1)(x+1)(2x-1)(x+2)$<br>stated explicitly                                 |             |  |  |
| Not | tes:                                                                                       | l      |                                                                                                    |                                                                                                                                                 |             |  |  |
| 4.  | 4. Ignore the appearance of $=0$ .                                                         |        |                                                                                                    |                                                                                                                                                 |             |  |  |
| 5.  | Candid                                                                                     | ates v | who arrive at $(x-1)(x+1)(2x^2+3x-2)$                                                              | or $(x-1)(x+2)(2x^2+x-1)$ by using                                                                                                              |             |  |  |
| 6.  | algebraic long division or by inspection, gain $\bullet^3$ , $\bullet^4$ and $\bullet^5$ . |        |                                                                                                    |                                                                                                                                                 |             |  |  |

7. •<sup>3</sup> and •<sup>4</sup> may be awarded for applications of synthetic division even when previous trials contain errors. •<sup>5</sup> and •<sup>6</sup> are available.

| Question                                                                                                            | Generic scheme                                                                                                                  | Illustrative scheme                                                                                                                                                                                                         |             |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|--|--|--|
| 10. (b) (continu                                                                                                    | 10. (b) (continued)                                                                                                             |                                                                                                                                                                                                                             |             |  |  |  |  |  |
| Commonly Obse                                                                                                       | Commonly Observed Responses:                                                                                                    |                                                                                                                                                                                                                             |             |  |  |  |  |  |
| Candidate C - gr<br>(a)<br>$x$ $2x^{3}$                                                                             | $5x^2$ $x$ $-2$ $5x^3$ $x^2$ $-2x$                                                                                              | Candidate D - grid method<br>(a) $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                     |             |  |  |  |  |  |
| $-1$ $-2x^{3}$                                                                                                      | $-5x^2$ $-x$ 2                                                                                                                  | $-1$ $-2x^3$ $-5x^2$ $-x$ 2                                                                                                                                                                                                 |             |  |  |  |  |  |
| (b) $2x^2$<br>x $2x^3$<br>                                                                                          | ···· ··· ··· ··· ··· ··· ··· ··· ··· ·                                                                                          | (b) $2x^2 \dots \dots$<br>$x 2x^3 \dots \dots$<br>$\dots \dots \dots \dots \dots$                                                                                                                                           | ×           |  |  |  |  |  |
| • <sup>3</sup> is awarded for<br>expression (whic<br>(a) ) <b>AND</b> the ter<br>summing to the<br>cubic respective | r evidence of the cubic<br>th may be in the grid from part<br>rms in the diagonal boxes<br>second and third terms in the<br>ly. | • <sup>3</sup> is awarded for evidence of the cubic<br>expression (which may be in the grid from<br>(a) ) <b>AND</b> the terms in the diagonal boxes<br>summing to the second and third terms in the<br>cubic respectively. | part<br>:he |  |  |  |  |  |
| $\begin{array}{c c} & 2x^2 \\ x & 2x^3 \\ +1 & 2x^2 \end{array}$                                                    | $\begin{array}{c ccc} 3x & -2 \\ 3x^2 & -2x \\ 3x & -2 \\ \end{array}$                                                          | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                       | 1           |  |  |  |  |  |
| $2x^2 + 3x - 2$                                                                                                     | •5 🗸                                                                                                                            | $2x^2 + x - 1$ • <sup>5</sup>                                                                                                                                                                                               | ✓           |  |  |  |  |  |
| (x-1)(x+1)(2x                                                                                                       | (x+2) • <sup>6</sup> ✓                                                                                                          | (x-1)(x+2)(x+1)(2x-1) • <sup>6</sup>                                                                                                                                                                                        | ✓           |  |  |  |  |  |
| Candidate E<br>$\frac{1}{2}$ $2$ $5$ $1$ $2$ $6$ $(x-\frac{1}{2})(2x^2+6x)$ $(2x-1)(x^2+3x)$ $(x-1)(2x-1)(x)$       | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                           | Candidate F<br>$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                       | <b>*</b>    |  |  |  |  |  |
|                                                                                                                     |                                                                                                                                 |                                                                                                                                                                                                                             |             |  |  |  |  |  |

| Question |     | on | Generic scheme                                                                         | Illustrative scheme                                                                        | Max<br>mark |
|----------|-----|----|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------|
| 11.      | (a) |    | • <sup>1</sup> use compound angle formula                                              | • $k \cos x^{\circ} \cos a^{\circ} + k \sin x^{\circ} \sin a^{\circ}$<br>stated explicitly | 4           |
|          |     |    | • <sup>2</sup> compare coefficients                                                    | • <sup>2</sup> $k \cos a^\circ = 1, k \sin a^\circ = \sqrt{3}$<br>stated explicitly        |             |
|          |     |    | • <sup>3</sup> process for $k$                                                         | • <sup>3</sup> $k = 2$                                                                     |             |
|          |     |    | <ul> <li><sup>4</sup> process for <i>a</i> and express in<br/>required form</li> </ul> | • <sup>4</sup> $2\cos(x-60)^{\circ}$                                                       |             |

Notes:

1. Accept  $k(\cos x^{\circ}\cos a^{\circ} + \sin x^{\circ}\sin a^{\circ})$  for  $\bullet^{1}$ . Treat  $k\cos x^{\circ}\cos a^{\circ} + \sin x^{\circ}\sin a^{\circ}$  as bad form only if the equations at the  $\bullet^{2}$  stage both contain k.

- 2. Do not penalise the omission of degree signs.
- 3.  $2\cos x^{\circ}\cos a^{\circ} + 2\sin x^{\circ}\sin a^{\circ}$  or  $2(\cos x^{\circ}\cos a^{\circ} + \sin x^{\circ}\sin a^{\circ})$  is acceptable for  $\bullet^{1}$  and  $\bullet^{3}$ .
- 4. •<sup>2</sup> is not available for  $k \cos x^{\circ} = 1, k \sin x^{\circ} = \sqrt{3}$ , however •<sup>4</sup> may still be gained- see Candidate E
- 5. •<sup>3</sup> is only available for a single value of k, k > 0.
- 6. •<sup>3</sup> is not available to candidates who work with  $\sqrt{4}$  throughout parts (a) and (b) without explicitly simplifying at any stage. •<sup>4</sup> is still available.
- 7. •<sup>4</sup> is not available for a value of a given in radians.
- 8. Candidates may use any form of the wave function for  $\bullet^1$ ,  $\bullet^2$  and  $\bullet^3$ . However,  $\bullet^4$  is only available if the wave is interpreted in the form  $k \cos(x-a)^\circ$ .
- 9. Evidence for  $\bullet^4$  may not appear until part (b).

| Commonly Observed Responses:                   |                                  |                                                                                                                                  |                                                                                                              |  |  |  |
|------------------------------------------------|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--|--|--|
| Candidate A                                    | • <sup>1</sup> ^                 | <b>Candidate B - inconsistency</b><br>$k \cos x^{\circ} \cos a^{\circ} + k \sin x^{\circ} \sin a^{\circ} \bullet^{1} \checkmark$ | <b>Candidate C</b><br>$\cos x^{\circ} \cos a^{\circ} + \sin x^{\circ} \sin a^{\circ} \bullet^{1} \mathbf{x}$ |  |  |  |
| $2\cos a^\circ = 1$ $2\sin a^\circ = \sqrt{3}$ | • <sup>2</sup> ✓• <sup>3</sup> ✓ | $\cos a^{\circ} = 1$<br>$\sin a^{\circ} = \sqrt{3}$ • <sup>2</sup> *                                                             | $\cos a^{\circ} = 1$<br>$\sin a^{\circ} = \sqrt{3}$<br>k = 2<br>$e^{2} \checkmark_{2}$<br>$e^{3} \checkmark$ |  |  |  |
| $\tan a^\circ = \sqrt{3}$ $a = 60$             |                                  | $\tan a^\circ = \sqrt{3}$ $a = 60$                                                                                               | $\tan a^\circ = \sqrt{3}$ $a = 60$                                                                           |  |  |  |
| $2\cos(x-60)^\circ$                            | •4 🗸                             | $2\cos(x-60)^\circ$ $\bullet^3 \checkmark \bullet^4 \bigstar$                                                                    | $2\cos(x-60)^\circ$ • <sup>4</sup> ×                                                                         |  |  |  |

| Question                                                    | Gener                                                                                        | ric scheme                                                        | Illu                                                                     | istrative scheme                                          | Max<br>mark        |
|-------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------|--------------------|
| 11. (a) (continu                                            | ed)                                                                                          |                                                                   |                                                                          |                                                           |                    |
| Candidate D - en<br>$k \cos x^{\circ} \cos a^{\circ} + b$   | <b>Frors at <math>\bullet^2</math></b><br>$k \sin x^\circ \sin a^\circ \bullet^1 \checkmark$ | Candidate E - use of $k \cos x^{\circ} \cos a^{\circ} + k \sin x$ | $x \text{ at } \bullet^2$<br>$x^\circ \sin a^\circ \bullet^1 \checkmark$ | <b>Candidate F</b><br>$k \sin A \cos B + k \cos A \sin B$ | }• <sup>1</sup> ×  |
| $k \cos a^\circ = \sqrt{3}$ $k \sin a^\circ = 1$            | • <sup>2</sup> ¥                                                                             | $k \cos x^{\circ} = 1$ $k \sin x^{\circ} = \sqrt{3}$              | • <sup>2</sup> x                                                         | $k\cos A = 1$ $k\sin A = \sqrt{3}$                        | • <sup>2</sup> ×   |
| $\tan a^\circ = \frac{1}{\sqrt{3}}$                         |                                                                                              | $\tan x^\circ = \sqrt{3}$                                         |                                                                          | $\tan A = \sqrt{3}$                                       |                    |
| $\begin{vmatrix} a = 30 \\ 2\cos(x-30)^\circ \end{vmatrix}$ | ● <sup>3</sup> ✓● <sup>4</sup> ✓ 1                                                           | x = 60<br>$2\cos(x-60)^{\circ}$                                   | • <sup>3</sup> • <sup>4</sup> 1                                          | $2\cos(x-60)^\circ$ • <sup>3</sup>                        | • <sup>4</sup> √ 1 |

| Q     | uestic              | on                  | Generic scheme                                                                                             | Illustrative scheme                                                                                                                                                                                                                                                                                                                                  | Max<br>mark |
|-------|---------------------|---------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 11.   | (b)                 |                     | <ul> <li><sup>5</sup> exactly two roots identifiable<br/>from graph</li> </ul>                             | • <sup>5</sup> (150,0) and (330,0)                                                                                                                                                                                                                                                                                                                   | 3           |
|       |                     |                     | <ul> <li><sup>6</sup> coordinates of exactly two<br/>turning points identifiable from<br/>graph</li> </ul> | • <sup>6</sup> (60,2) and (240,-2)                                                                                                                                                                                                                                                                                                                   |             |
|       |                     |                     | • <sup>7</sup> y-intercept and value of y at<br>x = 360 identifiable from graph                            | •7 1<br><sup>y</sup><br><sup>4</sup><br><sup>3</sup><br><sup>2</sup><br><sup>1</sup><br><sup>3</sup><br><sup>3</sup><br><sup>6</sup><br><sup>9</sup><br><sup>1</sup><br><sup>1</sup><br><sup>1</sup><br><sup>3</sup><br><sup>1</sup><br><sup>1</sup><br><sup>1</sup><br><sup>1</sup><br><sup>1</sup><br><sup>1</sup><br><sup>1</sup><br><sup>1</sup> |             |
| Note  | s:                  |                     |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                      |             |
| 10. • | ⁵, • <sup>6</sup> a | nd • <sup>7</sup>   | are only available for attempting to                                                                       | draw a "cosine" graph with a period of 36                                                                                                                                                                                                                                                                                                            | 0°.         |
| 11. l | gnore               | any p               | part of a graph drawn outwith $0 \le x$                                                                    | ≤ 360 .                                                                                                                                                                                                                                                                                                                                              |             |
| 12. V | andid               | al mai<br>late's    | King is not applicable to $\bullet^{\circ}$ and $\bullet^{\circ}$ .                                        | th the equation obtained in (a) see also                                                                                                                                                                                                                                                                                                             |             |
| C     | andid               | ates                | G and H.                                                                                                   |                                                                                                                                                                                                                                                                                                                                                      |             |
| 14. F | or any              | y inco              | rrect horizontal translation of the g                                                                      | raph of the wave function arrived at in par                                                                                                                                                                                                                                                                                                          | t (a)       |
| 0     | only ●°             | is av               | ailable.                                                                                                   |                                                                                                                                                                                                                                                                                                                                                      |             |
| Com   | monly               | / Obs               | erved Responses:                                                                                           |                                                                                                                                                                                                                                                                                                                                                      |             |
| Canc  | lidate              | G - i               | ncorrect translation                                                                                       | Candidate H - incorrect equation                                                                                                                                                                                                                                                                                                                     |             |
| (a)   | 2 c                 | os(x -              | -60) $^\circ$ - correct equation                                                                           | (a) $2\cos(x+60)^\circ$ - incorrect equation                                                                                                                                                                                                                                                                                                         |             |
| (b)   | Inc                 | orrec               | t translation:                                                                                             | (b) Sketch of $2\cos(x+60)^\circ$                                                                                                                                                                                                                                                                                                                    |             |
|       | Ske                 | etch o              | $f 2\cos(x+60)^\circ$                                                                                      | all 3 marks available                                                                                                                                                                                                                                                                                                                                |             |
|       | onl                 | y ● <sup>6</sup> is | available                                                                                                  | 4<br>3<br>2<br>0<br>3<br>60<br>90<br>120<br>150<br>180<br>10<br>240<br>270<br>300<br>350<br>350<br>350<br>350<br>350<br>350<br>35                                                                                                                                                                                                                    |             |

| Q                    | uestio                      | n                    | Generic scheme                                                                                    | Illustrative scheme                                                                  | Max<br>mark |
|----------------------|-----------------------------|----------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------|
| 12.                  |                             |                      | • <sup>1</sup> write in differentiable form                                                       | • <sup>1</sup> $12x^{\frac{1}{3}}$ stated or implied by • <sup>2</sup>               | 4           |
|                      |                             |                      | • <sup>2</sup> differentiate                                                                      | • <sup>2</sup> $12 \times \frac{1}{3} \times x^{-\frac{2}{3}}$                       |             |
|                      |                             |                      | • <sup>3</sup> solve for $a^{-\frac{2}{3}}$ or $a^{\frac{2}{3}}$                                  | • <sup>3</sup> $a^{-\frac{2}{3}} = \frac{1}{4}$ or $a^{\frac{2}{3}} = 4$             |             |
|                      |                             |                      | • <sup>4</sup> solve for $a$                                                                      | •4 $a=8$                                                                             |             |
| Note                 | s:                          |                      |                                                                                                   |                                                                                      |             |
| 1. •<br>2. V         | <sup>2</sup> is on<br>Vhere | ly ava<br>candi      | ailable for differentiating a term wind a term wind a term wind ates attempt to integrate or make | th a fractional index.<br>I no attempt to differentiate, only • <sup>1</sup> is avai | ailable.    |
| 3. A                 | ccept                       | $x^{-\frac{2}{3}}$ = | $=\frac{1}{4}$ or $x^{\frac{2}{3}}=4$ at $\bullet^3$ . See Candidate                              | es A and B.                                                                          |             |
| 4. •<br>5. D         | ⁴ is on<br>)o not           | ly ava<br>pena       | ailable where the expression at $\bullet^2$ is lise the inclusion of $-8$ at $\bullet^4$ .        | s of the form $kx^{-\frac{m}{n}}$ where $m \neq 1$ .                                 |             |
| Com                  | monly                       | Obse                 | erved Responses:                                                                                  |                                                                                      |             |
| Canc<br>             | lidate                      | A - v                | vorking in terms of x throughout<br>$\bullet^1 \checkmark \bullet^2 \checkmark$                   | Candidate B<br>● <sup>1</sup> ✓ ● <sup>2</sup> ✓                                     |             |
| $x^{-\frac{2}{3}} =$ | $=\frac{1}{4}$              |                      | •3 🗸                                                                                              | $x^{-\frac{2}{3}} = \frac{1}{4}$ • <sup>3</sup> ✓                                    |             |
| $x = \mathbf{\xi}$   | 3                           |                      | • <sup>4</sup> ×                                                                                  | (x=8)                                                                                |             |
|                      |                             |                      |                                                                                                   | a = 8 • <sup>4</sup> ✓                                                               |             |
| Canc                 | lidate                      | с                    |                                                                                                   | Candidate D - partly differentiated                                                  |             |
| f(x                  | )=12                        | $x^{\frac{3}{2}}$    | • <sup>1</sup> x                                                                                  | $f(x) = 12x^{\frac{1}{3}} \qquad \bullet^1 \checkmark$                               |             |
| f'(x)                | c) = 18                     | $x^{\frac{1}{2}}$    | ● <sup>2</sup> ✓ 1                                                                                | $f'(x) = 12 \times \frac{1}{3} x^{\frac{4}{3}} \qquad \bullet^2 x$                   |             |
| $a^{\frac{1}{2}} =$  | 1<br>18                     |                      | • <sup>3</sup> ✓ 1                                                                                | $1 = 4a^{\frac{4}{3}}$                                                               |             |
| a = -                | 1<br>324                    |                      | • <sup>4</sup> ✓ 2                                                                                | $\frac{1}{4} = a^{\frac{4}{3}} \qquad \bullet^3 \checkmark_1$                        |             |
|                      |                             |                      |                                                                                                   | $a = \frac{1}{\sqrt{8}} \qquad \qquad \bullet^4 \checkmark_2$                        |             |

| Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | uestic                                                                                                                                                                                                                                                                                                                                                                                                                                   | on                    | Generic scheme                                                                                                                   | Illustrative scheme                                                                                                                      | Max<br>mark |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|
| 13.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (a)                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       | • <sup>1</sup> find midpoint of PQ                                                                                               | • <sup>1</sup> (5,6)                                                                                                                     | 4           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       | • <sup>2</sup> find gradient of PQ                                                                                               | • <sup>2</sup> -4 or $-\frac{8}{2}$                                                                                                      |             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       | <ul> <li><sup>3</sup> find perpendicular gradient</li> <li><sup>4</sup> find equation of perpendicular bisector</li> </ul>       | • <sup>3</sup> $\frac{1}{4}$<br>• <sup>4</sup> $4y = x + 19$                                                                             |             |  |
| Note                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | s:                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |                                                                                                                                  | -                                                                                                                                        |             |  |
| 1. •<br>2. T<br>3. A<br>c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <ol> <li>•<sup>4</sup> is only available as a consequence of using a perpendicular gradient and a mid-point.</li> <li>The gradient of the perpendicular bisector must appear in fully simplified form at •<sup>3</sup> or •<sup>4</sup> stage for •<sup>3</sup> to be awarded.</li> <li>At •<sup>4</sup> accept 4y-x=19, 4y-x-19=0, or any other rearrangement of the equation where the constant terms have been simplified.</li> </ol> |                       |                                                                                                                                  |                                                                                                                                          |             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |                                                                                                                                  |                                                                                                                                          |             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (b)                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       | <ul> <li><sup>5</sup> identify <i>x</i>-coordinate of centre</li> <li><sup>6</sup> find <i>y</i>-coordinate of centre</li> </ul> | • <sup>5</sup> 9<br>• <sup>6</sup> 7                                                                                                     | 4           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       | • <sup>7</sup> find radius                                                                                                       | • <sup>7</sup> \sqrt{34}                                                                                                                 |             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       | • <sup>8</sup> state equation of circle                                                                                          | • <sup>8</sup> $(x-9)^2 + (y-7)^2 = 34$                                                                                                  |             |  |
| Note                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | s:                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |                                                                                                                                  |                                                                                                                                          |             |  |
| <ol> <li>Do not accept "centre = (9,2)" as evidence of •<sup>5</sup>.</li> <li>Where candidates use PQ, QR or PR as the diameter of the circle no marks are available.</li> <li>•<sup>7</sup> and •<sup>8</sup> are only available as a consequence of using the point of intersection of two perpendicular bisectors and a point on the circumference of the circle.</li> <li>Accept r<sup>2</sup> = 34 for •<sup>7</sup>.</li> <li>(x-9)<sup>2</sup> + (y-7)<sup>2</sup> = (√34)<sup>2</sup> does not gain •<sup>8</sup>.</li> </ol> |                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |                                                                                                                                  |                                                                                                                                          |             |  |
| Commonly Observed Responses:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |                                                                                                                                  |                                                                                                                                          |             |  |
| Canc<br>of P(<br>Cent<br>Radiu<br>Equa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | lidate<br>2<br>re = ('<br>us = 5<br>tion:                                                                                                                                                                                                                                                                                                                                                                                                | 9,6)<br>( <i>x</i> -9 | Porizontal line through midpoint<br>$e^{5} \checkmark e^{6} \times$<br>$e^{7} \times$<br>$e^{7} \times$<br>$e^{8} \times$        | Candidate B - perpendicular bisector of P<br>Perpendicular bisector of PR: $y = x - 2$<br>Centre = (9,7)<br>$\cdot^5 \checkmark \cdot^6$ | R<br>• ✓    |  |

[END OF MARKING INSTRUCTIONS]



## 2024 Mathematics

# Higher - Paper 2

## **Question Paper Finalised Marking Instructions**

© Scottish Qualifications Authority 2024

These marking instructions have been prepared by examination teams for use by SQA appointed markers when marking external course assessments.

The information in this document may be reproduced in support of SQA qualifications only on a noncommercial basis. If it is reproduced, SQA must be clearly acknowledged as the source. If it is to be reproduced for any other purpose, written permission must be obtained from <u>permissions@sqa.org.uk</u>.



| Question                          |                                                                                                                                                                                                                                                                                                                                                                                                                                      | on                      | Generic scheme                              |                   | Illustrative scheme                 |                    | Max<br>mark      |
|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------------------------------------|-------------------|-------------------------------------|--------------------|------------------|
| 1.                                | (a)                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         | • <sup>1</sup> determine midpoint of AC     |                   | • <sup>1</sup> (4,4)                |                    | 3                |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         | • <sup>2</sup> determine gradient of median |                   | • <sup>2</sup> 2 or $\frac{10}{5}$  |                    |                  |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         | • <sup>3</sup> find equation of median      |                   | $\bullet^3  y = 2x - 4$             |                    |                  |
| Note                              | s:                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         |                                             |                   |                                     |                    |                  |
| 1. •<br>2. •<br>3. A<br>t<br>4. • | <ol> <li>•<sup>2</sup> is only available to candidates who use a midpoint to find a gradient.</li> <li>•<sup>3</sup> is only available as a consequence of using a 'midpoint' of AC and the point B</li> <li>At •<sup>3</sup> accept any arrangement of a candidate's equation where the constant terms have been simplified.</li> <li>•<sup>3</sup> is not available as a consequence of using a perpendicular gradient.</li> </ol> |                         |                                             |                   |                                     |                    |                  |
| Com                               | monly                                                                                                                                                                                                                                                                                                                                                                                                                                | / Obse                  | erved Responses:                            |                   |                                     |                    |                  |
| Canc<br>Midp                      | <b>lidate</b><br>oint =                                                                                                                                                                                                                                                                                                                                                                                                              | A - p<br>(4,4)          | erpendicular bisector of AC<br>•1 ✓         | Car               | ididate B - altitude through B<br>4 | 1 .                |                  |
| m <sub>AC</sub>                   | $=-\frac{4}{7}$                                                                                                                                                                                                                                                                                                                                                                                                                      | $\Rightarrow m_{\perp}$ | $=\frac{7}{4}$ $\bullet^2 \times$           | m <sub>AC</sub>   | =7                                  | • •                |                  |
| <b>4</b> <i>y</i> =               | -7 <i>x</i> -                                                                                                                                                                                                                                                                                                                                                                                                                        | 12                      | 4<br>● <sup>3</sup> ✓ <sub>2</sub>          | $m_{\perp}$       | $=\frac{7}{4}$                      | • <sup>2</sup> ×   |                  |
| For c                             | other r                                                                                                                                                                                                                                                                                                                                                                                                                              | oernei                  | ndicular bisectors award $0/3$              | <b>4</b> <i>y</i> | =7x-17                              | • <sup>3</sup> ✓ 2 |                  |
| Cano                              | lidate                                                                                                                                                                                                                                                                                                                                                                                                                               | C - m                   | redian through A                            | Car               | didate D - median through C         |                    |                  |
| midp                              | oint E                                                                                                                                                                                                                                                                                                                                                                                                                               | BC = (1)                | $(5, -3)$ $\bullet^1 \times$                | mid               | point AB $(-2,1)$                   |                    | • <sup>1</sup> × |
| $m_{\scriptscriptstyle{\rm AM}}$  | $=-\frac{11}{8}$                                                                                                                                                                                                                                                                                                                                                                                                                     |                         | ● <sup>2</sup> ✓ 1                          | т <sub>см</sub>   | $n = -\frac{1}{13}$                 | ● <sup>2</sup> ✓ 1 |                  |
| <b>8</b> y =                      | -11x                                                                                                                                                                                                                                                                                                                                                                                                                                 | + 31                    | ● <sup>3</sup> ✓ 2                          | 13y               | y = -x + 11                         | ● <sup>3</sup> ✓ 2 |                  |
|                                   | (b)                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         | • <sup>4</sup> determine gradient of BC     |                   | • $\frac{6}{12}$                    |                    | 3                |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         | • <sup>5</sup> determine gradient of L      |                   | • <sup>5</sup> $-\frac{12}{6}$      |                    |                  |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         | • <sup>6</sup> find equation of L           |                   | •6 $y = -2x + 22$                   |                    |                  |
| Note                              | s:                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         |                                             |                   |                                     |                    |                  |
| 5. •                              | <sup>6</sup> is o                                                                                                                                                                                                                                                                                                                                                                                                                    | nly av                  | ailable as a consequence of using a         | a per             | pendicular gradient and C.          |                    |                  |
| 6. A<br>S                         | <ol> <li>At •<sup>6</sup> accept any arrangement of a candidate's equation where the constant terms have been<br/>simplified.</li> </ol>                                                                                                                                                                                                                                                                                             |                         |                                             |                   |                                     |                    |                  |
| Commonly Observed Responses:      |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |                                             |                   |                                     |                    |                  |
| Cano                              | lidate                                                                                                                                                                                                                                                                                                                                                                                                                               | E - al                  | titude through C                            |                   |                                     |                    |                  |
| $m_{\rm AB}$                      | = -7                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         | • <sup>4</sup> ×                            |                   |                                     |                    |                  |
| $m_{\perp} =$                     | - <del>-</del><br>7                                                                                                                                                                                                                                                                                                                                                                                                                  |                         | • <sup>5</sup> ✓ 1                          |                   |                                     |                    |                  |
| $y = \frac{1}{2}$                 | $\frac{1}{7}(x-x)$                                                                                                                                                                                                                                                                                                                                                                                                                   | 11)                     | ● <sup>6</sup> ✓ 1                          |                   |                                     |                    |                  |

| Question                                                     |                               | on                                                      | Generic scheme                                |                                      | Illustrative scheme | Max<br>mark |
|--------------------------------------------------------------|-------------------------------|---------------------------------------------------------|-----------------------------------------------|--------------------------------------|---------------------|-------------|
| 1.                                                           | (c)                           | c) $\bullet^7$ determine <i>x</i> -coordinate $\bullet$ |                                               | • <sup>7</sup> 6.5 or $\frac{13}{2}$ | 2                   |             |
|                                                              |                               |                                                         | • <sup>8</sup> determine <i>y</i> -coordinate |                                      | • <sup>8</sup> 9    |             |
| Note                                                         | es:                           |                                                         |                                               |                                      |                     |             |
| 7. F                                                         | or $\left(\frac{2}{4}\right)$ | $\left(\frac{6}{4},9\right)$                            | award 1/2.                                    |                                      |                     |             |
| Cane                                                         | lidate                        | F - r                                                   |                                               |                                      |                     |             |
| (a) 4                                                        | 4v = 5                        | x-19                                                    |                                               |                                      |                     |             |
| (b)                                                          | (b) $y = -2x + 22$            |                                                         |                                               |                                      |                     |             |
| (c) $x = \frac{107}{13} = 8.2$ • <sup>7</sup> $\checkmark_1$ |                               |                                                         |                                               |                                      |                     |             |
| У                                                            | y = 5.6                       |                                                         | • <sup>8</sup> ✓ 1                            |                                      |                     |             |

| Question |  | on | Generic scheme                           | Illustrative scheme            | Max<br>mark |
|----------|--|----|------------------------------------------|--------------------------------|-------------|
| 2.       |  |    | • <sup>1</sup> find <i>y</i> -coordinate | • <sup>1</sup> 1               | 5           |
|          |  |    | $ullet^2$ write in differentiable form   | • <sup>2</sup> $8x^{-3}$       |             |
|          |  |    | • <sup>3</sup> differentiate             | • <sup>3</sup> 8×(-3) $x^{-4}$ |             |
|          |  |    | • <sup>4</sup> find gradient of tangent  | • $\frac{3}{2}$                |             |
|          |  |    | $ullet^5$ determine equation of tangent  | • $3x + 2y = 8$                |             |

Notes:

- 1. Only  $\bullet^1$  and  $\bullet^2$  are available to candidates who integrate. However, see Candidates E and F.
- 2.  $8 \times (-3) x^{-4}$  without previous working gains  $\bullet^2$  and  $\bullet^3$ .
- 3.  $\bullet^3$  is only available for differentiating a negative power.  $\bullet^4$  and  $\bullet^5$  are still available.
- 4. •<sup>4</sup> is not available for  $y = -\frac{3}{2}$ . However, where  $-\frac{3}{2}$  is then used as the gradient of the straight line, •<sup>4</sup> may be awarded see Candidates A, B and C.
- 5. •<sup>5</sup> is only available where candidates attempt to find the gradient by substituting into their derivative.
- 6.  $\bullet^5$  is not available as a consequence of using a perpendicular gradient.
- 7. Where x = 2 has not been used to determine the *y*-coordinate,  $\bullet^5$  is not available.

| Commonly Observed Responses:                |                        |                                            |                    |  |
|---------------------------------------------|------------------------|--------------------------------------------|--------------------|--|
| Candidate A - incorrect notation            |                        | Candidate B - use of values in equation    |                    |  |
| y = 1                                       | •¹ ✓ - BoD             | y=1                                        | •¹ ✓ - BoD         |  |
| $y = 8x^{-3}$                               | • <sup>2</sup> 🗸       | $y = 8x^{-3}$                              | • <sup>2</sup> 🗸   |  |
| $y = -24x^{-4}$                             | • 3 🗸                  | $\frac{dy}{dt} = 8 \times (-3) x^{-4}$     | • 3 🗸              |  |
| $y = -\frac{3}{2}1$                         | • <sup>4</sup> ✓ - BoD | $\frac{dx}{dy} = \frac{3}{3}$              | 4                  |  |
| 3x + 2y = 8                                 | •5 🗸                   | $\frac{1}{dx} = \frac{1}{2}$               | •                  |  |
|                                             |                        | $y = -\frac{3}{2}$                         |                    |  |
|                                             |                        | 3x+2y=8                                    | •5 🗸               |  |
| Candidate C - incorrect notation            |                        | Candidate D                                |                    |  |
| y = 1                                       | • <sup>1</sup> ✓ - BoD | y = 1                                      | • <sup>1</sup> 🗸   |  |
| $y = 8x^{-3}$                               | • <sup>2</sup> ✓       | $y = 8x^{-3}$                              | • <sup>2</sup> 🗸   |  |
| $\frac{dy}{dx} = 8 \times (-3) x^{-4}$      | • <sup>3</sup> ✓       | $\frac{dy}{dx} = 8 \times (-3) x^{-4} = 0$ | • 3 🗸              |  |
| $y = -\frac{3}{2}$                          | • <sup>4</sup> ×       | $8 \times (-3)(2)^{-4} = 0$                |                    |  |
| Fyidence for e <sup>4</sup> would need to a | annear in the          | $m = -\frac{3}{2}$                         | • <sup>4</sup> ×   |  |
| equation of the line                        |                        | 3x + 2y = 8                                | • <sup>5</sup> ✓ 1 |  |
|                                             |                        |                                            |                    |  |

| Question                    | Generic scheme                 | Illustrative scheme             | Max<br>mark                       |
|-----------------------------|--------------------------------|---------------------------------|-----------------------------------|
| 2. (continued)              |                                |                                 |                                   |
| Candidate E - ir            | ntegrating in part C           | andidate F - appearance of $+c$ | ,                                 |
| y = 1                       | • <sup>1</sup> ✓ y             | =1                              | • <sup>1</sup> 🗸                  |
| $y = 8x^{-3}$               | • <sup>2</sup> 🗸 y             | $=8x^{-3}$                      | • <sup>2</sup> ✓                  |
| $\frac{dy}{dx} = -24x^{-2}$ | $\bullet^3 \times \frac{a}{c}$ | $\frac{y}{x} = -24x^{-4} + c$   | • <sup>3</sup> × • <sup>4</sup> × |
| $\frac{dy}{dx} = -6$        | • <sup>4</sup> ✓ 1             | ~                               | • <sup>5</sup> ×                  |
| y = -6x + 13                | • <sup>5</sup> ✓ 1             |                                 |                                   |

| Q             | Question        |                 | Generic scheme                                                                                                    | Illustrative scheme                                                                                                                     | Max<br>mark |
|---------------|-----------------|-----------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 3.            | (a)             |                 | • <sup>1</sup> find $\overrightarrow{ED}$                                                                         | $\bullet^1 \begin{pmatrix} 1 \\ -4 \\ 6 \end{pmatrix}$                                                                                  | 2           |
|               |                 |                 | • <sup>2</sup> find $\overrightarrow{EF}$                                                                         | $\bullet^2 \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$                                                                                   |             |
| Note          | es:             |                 |                                                                                                                   |                                                                                                                                         |             |
| 1. Fo<br>2. A | or can<br>ccept | didate<br>vecto | es who find <b>both</b> $\overrightarrow{DE}$ <b>and</b> $\overrightarrow{FE}$ correctly rs written horizontally. | r, award 1/2.                                                                                                                           |             |
| Com           | monly           | v Obse          | erved Responses:                                                                                                  |                                                                                                                                         |             |
|               | 1               |                 | 1                                                                                                                 |                                                                                                                                         |             |
|               | (b)             | (i)             | • <sup>3</sup> evaluate $\overrightarrow{ED}.\overrightarrow{EF}$                                                 | • <sup>3</sup> 16                                                                                                                       | 1           |
|               |                 | (ii)            | • <sup>4</sup> evaluate $\overrightarrow{ED}$                                                                     | • <sup>4</sup> \sqrt{53}                                                                                                                | 4           |
|               |                 |                 | • <sup>5</sup> evaluate $\overrightarrow{EF}$                                                                     | ● <sup>5</sup> √14                                                                                                                      |             |
|               |                 |                 | • <sup>6</sup> substitute into formula for scalar product                                                         | • <sup>6</sup> $\cos \text{DEF} = \frac{16}{\sqrt{53} \times \sqrt{14}}$ or<br>$\sqrt{53} \times \sqrt{14} \times \cos \text{DEF} = 16$ |             |

•<sup>7</sup> 54.028...° or 0.942... radians

 $\bullet^7$  calculate angle

| Question                                                                                                                                                        | Generic scheme Illustrative scheme Max<br>mark                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                        |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 3. (b) (continue                                                                                                                                                | ed)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                        |  |  |  |  |  |
| Notes:                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                        |  |  |  |  |  |
| <ol> <li>Do not penali<br/>magnitude. I<br/>However, do</li> <li>4. •<sup>6</sup> is not avail</li> </ol>                                                       | <ul> <li>3. Do not penalise candidates who treat negative signs with a lack of rigour when calculating a magnitude. For example accept √1<sup>2</sup> + 4<sup>2</sup> + 6<sup>2</sup> = √53 or √1<sup>2</sup> + -4<sup>2</sup> + 6<sup>2</sup> = √53 for •<sup>4</sup>. However, do not accept √1<sup>2</sup> - 4<sup>2</sup> + 6<sup>2</sup> = √53 for •<sup>4</sup>.</li> <li>4. •<sup>6</sup> is not available to candidates who simply state the formula cos θ =<br/>ED.EF<br/>ED.EF<br/>ED.EF</li> </ul> |                                                                                                                                                                        |  |  |  |  |  |
| However, co<br>5. Accept correct<br>6. Do not penali<br>7. • <sup>7</sup> is only ava<br>8. • <sup>7</sup> is only ava<br>9. For a correct                      | However, $\cos\theta = \frac{16}{\sqrt{53} \times \sqrt{14}}$ and $\sqrt{53} \times \sqrt{14} \times \cos\theta = 16$ are acceptable for • <sup>6</sup> .<br>5. Accept correct answers rounded to 54° or 0.9 radians (or 60 gradians).<br>6. Do not penalise the omission or incorrect use of units.<br>7. • <sup>7</sup> is only available as a result of using a valid strategy.<br>8. • <sup>7</sup> is only available for a single angle.<br>9. For a correct answer with no working award 0/4            |                                                                                                                                                                        |  |  |  |  |  |
| Commonly Obse                                                                                                                                                   | erved Responses:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                        |  |  |  |  |  |
| Candidate A - p<br>$ \begin{pmatrix} 1 \\ -4 \\ 6 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix} = \begin{pmatrix} 2 \\ -2 \\ 18 \end{pmatrix} $ | oor notation<br>$\begin{pmatrix} 4\\ 3 \end{pmatrix} = 16$ $\bullet^3 \times$                                                                                                                                                                                                                                                                                                                                                                                                                                 | Candidate B - insufficient communication $ \vec{ED}  = \sqrt{53}$ •4 $ \vec{EF}  = \sqrt{14}$ •5 $\frac{16}{\sqrt{53} \times \sqrt{14}}$ •6 54.028° or 0.942 radians•7 |  |  |  |  |  |
| $\begin{vmatrix} \text{Candidate C - B} \\ \left  \overrightarrow{\text{OF}} \right  = \sqrt{14} \end{vmatrix}$                                                 | eware<br>• <sup>5</sup> ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                        |  |  |  |  |  |

| Question                   |                                          | n                               | Generic scheme                                                                                                                                   | Illustrative scheme                                                                                                                          | Max<br>mark                         |  |
|----------------------------|------------------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--|
| 4.                         | (a)                                      |                                 | • <sup>1</sup> identify <i>x</i> -coordinate                                                                                                     | •1 3                                                                                                                                         | 2                                   |  |
|                            |                                          |                                 | • <sup>2</sup> identify <i>y</i> -coordinate                                                                                                     | • <sup>2</sup> 5                                                                                                                             |                                     |  |
| Note                       | es:                                      |                                 |                                                                                                                                                  |                                                                                                                                              | <u> </u>                            |  |
|                            |                                          |                                 |                                                                                                                                                  |                                                                                                                                              |                                     |  |
| Com                        | monly                                    | Obse                            | erved Responses:                                                                                                                                 |                                                                                                                                              |                                     |  |
|                            |                                          |                                 | · · · · · · · · · · · · · · · · · · ·                                                                                                            |                                                                                                                                              |                                     |  |
|                            | (b)                                      |                                 | • <sup>3</sup> identify roots                                                                                                                    | • <sup>3</sup> "cubic" with roots at -1 and 2                                                                                                | 3                                   |  |
|                            |                                          |                                 | • <sup>4</sup> interpret point of inflection                                                                                                     | • <sup>4</sup> "cubic" with turning point at (2,0)                                                                                           |                                     |  |
|                            |                                          |                                 | complete cubic curve                                                                                                                             | • <sup>5</sup> cubic with maximum turning point at (2,0)                                                                                     |                                     |  |
|                            |                                          |                                 |                                                                                                                                                  |                                                                                                                                              |                                     |  |
| Note                       | es:                                      |                                 |                                                                                                                                                  |                                                                                                                                              |                                     |  |
| 1. N<br>2. W<br>av<br>3. D | ote tha<br>/here a<br>ward 0/<br>o not p | t the<br>cand<br>/3. H<br>enali | position of the minimum turning poi<br>lidate has not drawn a cubic curve or<br>owever see Candidate D.<br>se the appearance of an additional ro | int of $f'(x)$ is not being assessed.<br>Their graph does not extend outwith $-1 \le 0$<br>oot outwith $-1 \le x \le 2$ (on a cubic curve) a | $\leq x \leq 2$<br>at $\bullet^3$ . |  |
| Com                        | monly                                    | Obse                            | erved Responses:                                                                                                                                 |                                                                                                                                              |                                     |  |
| Cano                       | Candidate A - $-f'(x)$                   |                                 |                                                                                                                                                  | Candidate B                                                                                                                                  |                                     |  |
|                            |                                          |                                 | x-                                                                                                                                               |                                                                                                                                              |                                     |  |

| Question Generic scheme |     | Illustrative scheme A                                                          |      |
|-------------------------|-----|--------------------------------------------------------------------------------|------|
| 4. (b) (continue        | ed) |                                                                                |      |
| Candidate C             |     | Indidate D - left derivative ≠ right derivat<br>(2,0)<br>y<br>2<br>x<br>x<br>x | tive |

| Question                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n                         | Generic scher                                                                                                                             | me                                                                               | Illustrative scheme                                                                                                                                                                           | Max<br>mark |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|
| 5.                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           | • <sup>1</sup> integrate                                                                                                                  |                                                                                  | $\bullet^1  -\frac{1}{5}\cos 5x$                                                                                                                                                              | 3           |  |
|                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           | • <sup>2</sup> substitute limits                                                                                                          |                                                                                  | $\bullet^{2}\left(-\frac{1}{5}\cos\left(5\times\frac{\pi}{7}\right)\right)-\left(-\frac{1}{5}\cos\left(5\times0\right)\right)$                                                                |             |  |
|                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           | $\bullet^3$ evaluate integral                                                                                                             |                                                                                  | • <sup>3</sup> 0.3246                                                                                                                                                                         |             |  |
| Note                                                                                                                                                                   | s:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |                                                                                                                                           |                                                                                  |                                                                                                                                                                                               |             |  |
| <ol> <li>Fo</li> <li>in'</li> <li>Do</li> <li>in'</li> <li>Ac</li> <li>4. •<sup>3</sup></li> </ol>                                                                     | <ol> <li>For candidates who differentiate throughout, make no attempt to integrate, or use another invalid approach (for example cos5x<sup>2</sup>) award 0/3.</li> <li>Do not penalise the inclusion of '+c' or the continued appearance of the integral sign after integrating.</li> <li>Accept (-1/5 cos5(π/7))-(-1/5 cos5(0)) for •<sup>2</sup>.</li> <li>•<sup>3</sup> is only available where candidates have considered both limits within a trigonometric function.</li> </ol> |                           |                                                                                                                                           |                                                                                  |                                                                                                                                                                                               |             |  |
| Com                                                                                                                                                                    | nonly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <sup>,</sup> Obse         | rved Responses:                                                                                                                           |                                                                                  |                                                                                                                                                                                               |             |  |
| Candidate A - integrated in part<br>$-\cos 5x$ $\bullet^{1} \times$<br>$-\cos\left(\frac{5\pi}{7}\right) - \left(-\cos(5\times 0)\right)$ $\bullet^{2} \checkmark_{1}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Can<br>inte<br>cos<br>cos | didate B - insufficient evidence of<br>egration<br>$5x$ $\bullet^1 \times (\frac{5\pi}{7}) - (\cos(5 \times 0))$ $\bullet^2 \checkmark_2$ |                                                                                  |                                                                                                                                                                                               |             |  |
| 1.623                                                                                                                                                                  | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           | •••••                                                                                                                                     | -1.0                                                                             | • <sup>3</sup> ✓ <sub>2</sub>                                                                                                                                                                 |             |  |
| Cand<br>integ                                                                                                                                                          | idate<br>ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C - ir<br>า               | sufficient evidence of                                                                                                                    | Can<br>inte                                                                      | Candidate D - working in degrees before integrating                                                                                                                                           |             |  |
| $\frac{\frac{1}{5}\sin^2}{\frac{1}{5}\sin^2}$                                                                                                                          | $\frac{5\pi}{7} - \frac{1}{5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -sin O                    | • <sup>1</sup> $\times$<br>• <sup>2</sup> $\checkmark$ <sub>2</sub><br>• <sup>3</sup> $\checkmark$ <sub>2</sub>                           | $ \begin{bmatrix} 25.7 \\ 5 \\ 0 \\ -\frac{1}{5} \\ (-1) \\ 0.32 \end{bmatrix} $ | $\sin 5x  dx \qquad \qquad \bullet^1 \times \\ \cos 5x \\ \frac{1}{5} \cos 128.57 \left(-\frac{1}{5} \cos 0\right) \qquad \bullet^2 \checkmark_1 \\ 246 \qquad \qquad \bullet^3 \checkmark_1$ |             |  |

| Question |  | n | Generic scheme                              | Illustrative scheme                                                                                          | Max<br>mark |
|----------|--|---|---------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------|
| 6.       |  |   | Method 1                                    | Method 1                                                                                                     | 5           |
|          |  |   | • <sup>1</sup> state linear equation        | • $\log_5 y = 3\log_5 x - 2$                                                                                 |             |
|          |  |   | • <sup>2</sup> introduce logs               | • <sup>2</sup> $\log_5 y = 3\log_5 x - 2\log_5 5$                                                            |             |
|          |  |   | • <sup>3</sup> use laws of logs             | • $\log_5 y = \log_5 x^3 - \log_5 5^2$                                                                       |             |
|          |  |   | • <sup>4</sup> use laws of logs             | • $\log_5 y = \log_5 \frac{x^3}{5^2}$                                                                        |             |
|          |  |   | • <sup>5</sup> state $a$ and $b$            | • <sup>5</sup> $a = \frac{1}{25}, b = 3 \text{ or } y = \frac{x^3}{25}$                                      |             |
|          |  |   | Method 2                                    | Method 2                                                                                                     | 5           |
|          |  |   | • <sup>1</sup> state linear equation        | • $\log_5 y = 3\log_5 x - 2$                                                                                 |             |
|          |  |   | • <sup>2</sup> use laws of logs             | • <sup>2</sup> $\log_5 y = \log_5 x^3 - 2$                                                                   |             |
|          |  |   | • <sup>3</sup> use laws of logs             | $\bullet^3 \log_5 \frac{y}{x^3} = -2$                                                                        |             |
|          |  |   | • <sup>4</sup> use laws of logs             | $\bullet^4  \frac{y}{x^3} = 5^{-2}$                                                                          |             |
|          |  |   | • <sup>5</sup> state $a$ and $b$            | • <sup>5</sup> $a = \frac{1}{25}, b = 3 \text{ or } y = \frac{x^3}{25}$                                      |             |
|          |  |   | Method 3                                    | Method 3<br>The equations at • <sup>1</sup> , • <sup>2</sup> and • <sup>3</sup><br>must be stated explicitly | 5           |
|          |  |   | • <sup>1</sup> introduce logs to $y = ax^b$ | • <sup>1</sup> $\log_5 y = \log_5 ax^b$                                                                      |             |
|          |  |   | • <sup>2</sup> use laws of logs             | $\bullet^2 \log_5 y = b \log_5 x + \log_5 a$                                                                 |             |
|          |  |   | • <sup>3</sup> interpret intercept          | • $\log_5 a = -2$                                                                                            |             |
|          |  |   | • <sup>4</sup> use laws of logs             | $\bullet^4  a = \frac{1}{25}$                                                                                |             |
|          |  |   | • <sup>5</sup> interpret gradient           | • <sup>5</sup> $b=3$                                                                                         |             |

| Question                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Generic scheme                                                                                                              |                       | Illustrati                    | ive scheme                                           | Max<br>mark |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------------|------------------------------------------------------|-------------|--|
| 6. (continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                             |                       |                               |                                                      |             |  |
| Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                             |                       |                               |                                                      |             |  |
| <ol> <li>In any method, marks may only be awarded within a valid strategy using y = ax<sup>b</sup>. For example, see Candidates C and D.</li> <li>Markers must identify the method which best matches the candidate's approach; markers must not mix and match between methods.</li> <li>Penalise the omission of base 5 at most once in any method.</li> <li>Where candidates use an incorrect base then only •<sup>2</sup> and •<sup>3</sup> are available (in any method).</li> <li>Do not accept a = 5<sup>-2</sup>.</li> <li>In Method 3, do not accept m = 3 or gradient = 3 for •<sup>5</sup>.</li> <li>Do not penalise candidates who score out "log" from equations of the form log<sub>5</sub> m = log<sub>5</sub> n.</li> </ol> |                                                                                                                             |                       |                               |                                                      |             |  |
| Commonly Obse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | erved Responses                                                                                                             |                       |                               |                                                      |             |  |
| Candidate A - m<br>in Method 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | issing equations at $\bullet^1$ , $\bullet^2$ and $\bullet^3$                                                               | Can                   | ndidate B - no wor<br>1       | king - Method 3                                      |             |  |
| $a = \frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •4 🗸                                                                                                                        | <i>b</i> =            | 25                            | • · ×                                                |             |  |
| 25<br>b = 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | • <sup>5</sup> ✓                                                                                                            | <i>a</i> =            | 3                             | • <sup>5</sup> ×                                     |             |  |
| Candidate C - M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ethod 2                                                                                                                     | Car                   | ndidate D - Method            | d 2                                                  |             |  |
| y = 3x - 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                             | log                   | $_{5} y = 3 \log_{5} x - 2$   | ●1 🗸                                                 |             |  |
| $\log_5 y = 3\log_5 x -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2 ● <sup>1</sup> ✓                                                                                                          | log                   | $_{5} y = \log_{5} x^{3} - 2$ | • <sup>2</sup> 🗸                                     |             |  |
| $\log_5 y = \log_5 x^3 -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2 ● <sup>2</sup> ✓                                                                                                          | $\frac{y}{2}$         | =-2                           | $\bullet^3 \times \bullet^4 \times \bullet^5 \times$ |             |  |
| $y = x^3 - 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\bullet^3 \times \bullet^4 \times \bullet^5 \times$                                                                        | <i>x</i> <sup>3</sup> |                               |                                                      |             |  |
| Candidate E - us<br>$\log_5 x = 4$ and $\log_5 x = 5^4$ and $y = 5^5$<br>$\log_5 x = 0$ , $\log_5 x = 1$ , $y = 5^{-2}$<br>$5^{-2} = a \times 1^b \implies a = 5^{-2}$<br>$5^{-1} = 5^{-2} \times 5^{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | See of coordinate pairs<br>$g_5 y = 10$ $e^1 \checkmark$<br>y = -2<br>$e^3 \checkmark$<br>$= \frac{1}{25}$ $e^4 \checkmark$ |                       |                               |                                                      |             |  |
| $b = 3 \times b = 3$<br>$\Rightarrow b = 3$<br>Candidates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -2 + 4b = 10<br>$\bullet^5 \checkmark$<br>may use (0, -2) for $\bullet^1$ and $\bullet^2$<br>and (4,10) for $\bullet^3$ .   |                       |                               |                                                      |             |  |

| Question |  | n | Generic scheme |                                                                       |                | Illustrative scheme                                                                                   | Max<br>mark |
|----------|--|---|----------------|-----------------------------------------------------------------------|----------------|-------------------------------------------------------------------------------------------------------|-------------|
| 7.       |  |   |                | Method 1                                                              |                | Method 1                                                                                              | 5           |
|          |  |   | • <sup>1</sup> | integrate using 'upper' –<br>'lower'                                  | •1             | $\int \left( \left( 6 + 4x - 2x^2 \right) - \left( x^3 - 6x^2 + 11x \right) \right) dx$               |             |
|          |  |   | • <sup>2</sup> | identify limits                                                       | • <sup>2</sup> | $\int_{0}^{2} \left( \left( 6 + 4x - 2x^{2} \right) - \left( x^{3} - 6x^{2} + 11x \right) \right) dx$ |             |
|          |  |   | • <sup>3</sup> | integrate                                                             | • <sup>3</sup> | $6x - \frac{7}{2}x^2 + \frac{4}{3}x^3 - \frac{1}{4}x^4$                                               |             |
|          |  |   | •4             | substitute limits                                                     | • <sup>4</sup> | $\left(6(2)-\frac{7}{2}(2)^{2}+\frac{4}{3}(2)^{3}-\frac{1}{4}(2)^{4}\right)-0$                        |             |
|          |  |   | • <sup>5</sup> | evaluate area                                                         | •5             | $\frac{14}{3}$ (units <sup>2</sup> )                                                                  |             |
|          |  |   |                | Method 2                                                              |                | Method 2                                                                                              |             |
|          |  |   | • <sup>1</sup> | know to integrate<br>between appropriate<br>limits for both equations | • <sup>1</sup> | $\int_{0}^{2} \dots dx$ and $\int_{0}^{2} \dots dx$                                                   |             |
|          |  |   | • <sup>2</sup> | integrate both functions                                              | • <sup>2</sup> | $6x + \frac{4x^2}{2} - \frac{2x^3}{3}$ and $\frac{x^4}{4} - \frac{6x^3}{3} + \frac{11x^2}{2}$         |             |
|          |  |   | • <sup>3</sup> | substitute limits into both<br>expressions                            | • <sup>3</sup> | $\left(6(2) + \frac{4(2)^2}{2} - \frac{2(2)^3}{3}\right) - 0$ and                                     |             |
|          |  |   |                |                                                                       |                | $\left(\frac{(2)^4}{4} - \frac{6(2)^3}{3} + \frac{11(2)^2}{2}\right) - 0$                             |             |
|          |  |   | •4             | evaluate both integrals                                               | •4             | $\frac{44}{3}$ and 10                                                                                 |             |
|          |  |   | •5             | evidence of subtracting<br>areas                                      | •5             | $\frac{14}{3}$ (units <sup>2</sup> )                                                                  |             |

| Question                                                 | Generic sche                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | me                                | Illustrative scheme                                                                                                   | Max<br>mark        |  |  |  |  |  |  |  |
|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------|--|--|--|--|--|--|--|
| 7. (continued)                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                   |                                                                                                                       |                    |  |  |  |  |  |  |  |
| Notes:                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                   |                                                                                                                       |                    |  |  |  |  |  |  |  |
| 1. Correct an                                            | Correct answer with no working - award 1/5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |                                                                                                                       |                    |  |  |  |  |  |  |  |
| 2. Do not pen                                            | Do not penalise lack of ' $dx$ ' at $\bullet^1$ in Method 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                   |                                                                                                                       |                    |  |  |  |  |  |  |  |
| 3. In Method                                             | In Method 1, limits and 'dx' must appear by the $\bullet^2$ stage for $\bullet^2$ to be awarded and in Method 2 by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |                                                                                                                       |                    |  |  |  |  |  |  |  |
| 4. In Method                                             | 1. treat the absence of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | f brackets a                      | t $\bullet^1$ stage as bad form only if the correct in                                                                | tegrand            |  |  |  |  |  |  |  |
| is obtained                                              | I. See Candidates C and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | d D.                              |                                                                                                                       |                    |  |  |  |  |  |  |  |
| 5. Where a ca                                            | andidate differentiates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | one or mor                        | e terms, or fails to integrate, no further m                                                                          | arks are           |  |  |  |  |  |  |  |
| available.                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                   |                                                                                                                       |                    |  |  |  |  |  |  |  |
| 6. In Method                                             | 1, accept unsimplified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | expressions                       | s such as $6x + \frac{4x^2}{2} - \frac{2x^2}{3} - \frac{x^3}{4} + \frac{6x^2}{3} - \frac{11x^2}{2}$ at •              | , <sup>3</sup>     |  |  |  |  |  |  |  |
| 7. Do not pen                                            | alise the inclusion of '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +c'.                              |                                                                                                                       |                    |  |  |  |  |  |  |  |
| 8. Do not pen                                            | alise the continued ap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | pearance of                       | the integral sign or $dx$ after integrating.<br>14 14                                                                 |                    |  |  |  |  |  |  |  |
| 9. • <sup>3</sup> is not av                              | ailable where solution:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | s include sta                     | atements such as $-\frac{3}{3} = \frac{3}{3}$ square units'                                                           | , See              |  |  |  |  |  |  |  |
| Candidates<br>10. In Method<br>integrating<br>the limits | 5 A and B.<br>1, where a candidate u<br>g a polynomial with at 1<br>of 0 and 2 into the resu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | uses an inva<br>least four te     | lid strategy the only marks available are • <sup>3</sup><br>erms (of different degree) and • <sup>4</sup> for substit | for<br>uting       |  |  |  |  |  |  |  |
| 11. At $\bullet^4$ . do n                                | ot penalise candidates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | for who rec                       | luce powers of 0. For example writing 0 in 1                                                                          | olace of           |  |  |  |  |  |  |  |
| 0 <sup>4</sup> Similar                                   | lv. do not penalise car                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ndidates wri                      | ting 0 in place of $6(0)$ . However, candidate                                                                        | -s who             |  |  |  |  |  |  |  |
| · · · · · · · · · · · · · · · · · · ·                    | (y) do not periodice can                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                   |                                                                                                                       | 25 1110            |  |  |  |  |  |  |  |
| write 0° in                                              | place of 0 or 2(0) in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | place of 6                        | (0) do not gain • <sup>+</sup> .                                                                                      |                    |  |  |  |  |  |  |  |
| Commonly Obs                                             | served Responses:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                                                                                                                       |                    |  |  |  |  |  |  |  |
| Candidate A -                                            | switched limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                   | Candidate B - 'lower' - 'upper'                                                                                       |                    |  |  |  |  |  |  |  |
| $\int_{1}^{0} \left( (6+4x-2x^{2})^{2} \right)^{2} dx$   | $\left( r^{3} - 6r^{2} + 11r \right) dr$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | • <sup>2</sup> ✓                  | $\int_{1}^{2} \left( \left( x^{3} - 6x^{2} + 11x \right) - \left( 6 + 4x - 2x^{2} \right) \right) dx$                 | • <sup>2</sup> ✓   |  |  |  |  |  |  |  |
|                                                          | ) (x ox ( ( )))ax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                 |                                                                                                                       |                    |  |  |  |  |  |  |  |
| $-6x-\frac{7}{7}x^2+\frac{4}{7}$                         | $r^{3} - \frac{1}{r} r^{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •3 •                              | $\int_{-\infty}^{2} x^{3} - 4x^{2} + 7x - 6  dx$                                                                      |                    |  |  |  |  |  |  |  |
| $\begin{bmatrix} -0x & -x \\ 2 & 3 \end{bmatrix}$        | $\begin{bmatrix} -3^{n} & 2^{n} & 3^{n} & 4^{n} \\ & & & \end{bmatrix} \begin{bmatrix} -1^{n} & 4^{n} & 3^{n} & 7^{n} \end{bmatrix} \begin{bmatrix} -1^{n} & 4^{n} & 3^{n} & 7^{n} \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                                                                                                                       |                    |  |  |  |  |  |  |  |
| $=0-\left(6(2)-\frac{7}{2}\right)$                       | $=0-\left(6(2)-\frac{7}{2}(2)^{2}+\frac{4}{3}(2)^{3}-\frac{1}{4}(2)^{4}\right) \qquad \bullet^{4}\checkmark \qquad \left(\frac{4}{(1-2)^{4}},\frac{3}{(1-2)^{2}},\frac{7}{(1-2)^{2}},\frac{7}{(1-2)^{2}},\frac{7}{(1-2)^{2}},\frac{7}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{7}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{7}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{(1-2)^{2}},\frac{1}{($ |                                   |                                                                                                                       |                    |  |  |  |  |  |  |  |
| 14                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                   |                                                                                                                       |                    |  |  |  |  |  |  |  |
| $=-\frac{1}{3}$                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                   | $=-\frac{1}{3}$                                                                                                       |                    |  |  |  |  |  |  |  |
| $=\frac{14}{3}$                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | • <sup>1</sup> × • <sup>5</sup> × | $\therefore$ Area = $\frac{14}{3}$ • <sup>1</sup>                                                                     | ✓ • <sup>5</sup> ✓ |  |  |  |  |  |  |  |
|                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                   | J                                                                                                                     |                    |  |  |  |  |  |  |  |

| Question                                                     | Generic schem                              | ie                                                           | Illustrative scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Max<br>mark                                                |
|--------------------------------------------------------------|--------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| 7. (continued)                                               |                                            |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                            |
| Candidate C - n                                              | nissing brackets                           |                                                              | Candidate D - missing brackets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                            |
| $\int_{0}^{1} 6 + 4x - 2x^2 - x$                             | $e^{3} - 6x^{2} + 11x  dx$                 |                                                              | $\int_{0}^{1} 6 + 4x - 2x^{2} - x^{3} - 6x^{2} + 11x  dx  \bullet$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <sup>1</sup> <b>×</b> ● <sup>2</sup> <b>√</b> <sub>1</sub> |
| $\int_{0}^{1} 6-7x+4x^2-x$                                   | $\int dx = \int dx$                        | ✓ ● <sup>2</sup> ✓                                           | $\int_{0}^{1} 6 + 15x - 8x^2 - x^3 dx$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                            |
|                                                              |                                            |                                                              | $6x + \frac{15}{2}x^2 - \frac{8}{3}x^3 - \frac{1}{4}x^4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ● <sup>3</sup> ✓ 1                                         |
|                                                              |                                            |                                                              | $\left(6(2)+\frac{15}{2}(2)^2-\frac{8}{3}(2)^3-\frac{1}{4}(2)^4\right)-(0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ● <sup>4</sup> ✓ 1                                         |
|                                                              |                                            |                                                              | $\frac{50}{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ● <sup>5</sup> ✓ 1                                         |
| Candidate E - '                                              | upper' + 'lower'                           |                                                              | Candidate F - incorrect substitution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                            |
| $\int_{0}^{2} \left( \left( 6 + 4x - 2x^{2} \right) \right)$ | $+\left(x^3-6x^2+11x\right)\right)dx$      | • <sup>1</sup> <b>×</b> • <sup>2</sup> <b>√</b> <sub>1</sub> | $\int_{0}^{2} \left( \left( 6 + 4x - 2x^{2} \right) - \left( x^{3} - 6x^{2} + 11x \right) \right) dx$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ● <sup>1</sup> ✓ ● <sup>2</sup> ✓                          |
| $6x + \frac{15}{2}x^2 - \frac{8}{3}x^2$                      | $^{3} + \frac{1}{4}x^{4}$                  | • <sup>3</sup> ✓ 1                                           | $\left( 6x + 2x^2 - \frac{2}{3}x^3 \right) - \left( \frac{1}{4}x^4 - 2x^3 + \frac{11}{2}x^2 \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | • <sup>3</sup> ✓                                           |
| $\left  \left( 6(2) + \frac{15}{2}(2)^2 \right) \right $     | $-\frac{8}{3}(2)^{3}+\frac{1}{4}(2)^{4}-0$ | • <sup>4</sup> ✓ 1                                           | $\left  \left( 6(2) + 2(2)^2 - \frac{2}{3}(2)^3 \right) - \left( \frac{1}{4}(0)^4 - 2(0)^3 + \frac{11}{2}(0)^4 - 2(0)^3 + \frac{11}{2}(0)^4 - \frac{1}{3}(0)^4 - \frac$ | $(0)^2 = 4 \times$                                         |
| $\left  \frac{74}{3} \right $                                |                                            | ● <sup>5</sup> ✓ 1                                           | $\left \frac{44}{3}\right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | • <sup>5</sup> ✓ 2                                         |

| Question                                               |                                | on                          | Generic scheme                                            |                        | Illustrative scheme                                              | Max<br>mark |  |
|--------------------------------------------------------|--------------------------------|-----------------------------|-----------------------------------------------------------|------------------------|------------------------------------------------------------------|-------------|--|
| 8.                                                     | (a)                            |                             | • <sup>1</sup> interpret notation                         |                        | • $f(x+1)$ or $2g(x)^2 - 18$                                     | 2           |  |
|                                                        |                                |                             | • <sup>2</sup> state expression for $f(g(x))$             |                        | • <sup>2</sup> $2(x+1)^2 - 18$                                   |             |  |
| Note                                                   | es:                            |                             |                                                           |                        |                                                                  |             |  |
| 1.                                                     | For 2(                         | $(x+1)^2$                   | $^2$ –18 without working, award bot                       | h ●¹ a                 | nd ∙².                                                           |             |  |
| Com                                                    | monly                          | v Obse                      | erved Responses:                                          |                        |                                                                  |             |  |
| Cano                                                   | lidate                         | A - g                       | (f(x))                                                    | Car                    | ndidate B - beware of two "attempts"                             | ,           |  |
| $2x^{2}$ -                                             | -17                            |                             | $\bullet^1 \times \bullet^2 \checkmark_1$                 | f(                     | $g(x)) = 2x^2 - 18 \qquad \qquad \bullet^{1} \times \bullet^{2}$ | ×           |  |
|                                                        |                                |                             |                                                           | f(                     | $(x+1) = 2(x+1)^2 - 18$                                          |             |  |
|                                                        | (b)                            |                             | • <sup>3</sup> apply condition                            |                        | • $3 2(x+1)^2 - 18 = 0$                                          | 2           |  |
|                                                        |                                |                             | • <sup>4</sup> state values of $x$                        |                        | • <sup>4</sup> -4 and 2                                          |             |  |
| Note                                                   | es:                            |                             |                                                           |                        |                                                                  |             |  |
| 2.                                                     | Workiı                         | ng at •                     | <sup>3</sup> must be consistent with working              | gat •                  | ·                                                                |             |  |
| 3.                                                     | Accep                          | t 2( <i>x</i>               | $(+1)^2 - 18 \neq 0$ for $\bullet^3$ only when $x =$      | =-4                    | and $x = 2$ are stated explicitly at • <sup>4</sup> . S          | ee          |  |
|                                                        | Candio                         | late H                      |                                                           | _                      |                                                                  |             |  |
| 4.<br>5                                                | ● <sup>4</sup> is ol<br>For su | nly av                      | ailable for finding the roots of a q                      | uadra                  | itic.<br>: not available. For example 1 < 1 < 2                  |             |  |
| J.                                                     | i Oi Su                        | usequ                       | ent incorrect working, the finat in                       |                        | Shot available. For example $-4 < x < 2$                         | •           |  |
| Com                                                    | monly                          | v Obse                      | erved Responses:                                          |                        |                                                                  |             |  |
| Cano<br>Part                                           | lidate<br>(a)                  | C - e                       | xpanding brackets in (a)                                  | Car<br>Par             | ndidate D - expanding brackets in (a)<br>t (a)                   |             |  |
| f(g                                                    | (x)                            | = <b>2</b> (x·              | $(+1)^2 - 18$ $\bullet^1 \checkmark \bullet^2 \checkmark$ | f(                     | $g(x) = 2(x+1)^2 - 18$ • <sup>1</sup> •                          | 2 🧹         |  |
| f(g)                                                   | (x)) =                         | $= 2x^2 +$                  | -4x - 16                                                  | f(                     | $g(x) = 2x^2 - 16$                                               |             |  |
| Part                                                   | (b)                            |                             |                                                           | Par                    | t (b)                                                            |             |  |
| $2x^{2}$                                               | +4x -                          | 16 = C                      | • <sup>3</sup> ✓                                          | $2x^2$                 | -16 = 0 • <sup>3</sup> ×                                         |             |  |
| x = -                                                  | –4 an                          | d $x =$                     | 2 •4 🗸                                                    | <i>x</i> =             | $\pm \sqrt{8}$ • <sup>4</sup> $\checkmark$ 1                     |             |  |
| Cano                                                   | lidate                         | E - g                       | (f(x))                                                    | Car                    | ndidate F - equivalent condition                                 |             |  |
| Part                                                   | (a)                            | 0                           |                                                           |                        |                                                                  |             |  |
| f(g                                                    | (x) =                          | = <b>2</b> x <sup>2</sup> – | $\bullet^1 \times \bullet^2 \checkmark_1$                 | 2()                    | $(x+1)^2 = 18$ $\bullet^3 \checkmark$                            |             |  |
| Part                                                   | (b)                            |                             |                                                           |                        |                                                                  |             |  |
| $2x^2 - 17 = 0$ • <sup>3</sup> $\checkmark_1$          |                                |                             |                                                           |                        |                                                                  |             |  |
| $x = \pm \sqrt{\frac{17}{2}}$ $\bullet^4 \checkmark_1$ |                                |                             |                                                           |                        |                                                                  |             |  |
| Cano                                                   | lidate                         | G - เរ                      | se of ≠                                                   | Candidate H - use of + |                                                                  |             |  |
| 2(x)                                                   | $(+1)^{2}$ –                   | 18 ≠ C                      | • <sup>3</sup> ×                                          | 2(2                    | $(x+1)^2 - 18 \neq 0$                                            |             |  |
| $x \neq -$                                             | - <b>4</b> , x                 | ≠2                          | • <sup>4</sup> ✓ 1                                        | x≠                     | $-4, x \neq 2$                                                   |             |  |
|                                                        |                                |                             |                                                           | x =                    | x = -4, $x = 2$                                                  | •3 🗸        |  |

| Question                                                                   |                                                                                                                                                                                                                                                                                                                                                                                | on     | Generic scheme                                      |            | Illustrative scheme                                        | Max<br>mark |  |  |
|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------------------------------|------------|------------------------------------------------------------|-------------|--|--|
| 9.                                                                         | (a)                                                                                                                                                                                                                                                                                                                                                                            |        | • <sup>1</sup> differentiate two non-constant terms |            | • $eg x^2 - 2x$                                            | 4           |  |  |
|                                                                            |                                                                                                                                                                                                                                                                                                                                                                                |        | • <sup>2</sup> complete derivative and equate to 0  | е          | • <sup>2</sup> $x^2 - 2x - 3 = 0$                          |             |  |  |
|                                                                            |                                                                                                                                                                                                                                                                                                                                                                                |        | • <sup>3</sup> find <i>x</i> -coordinates           |            | $\bullet^3 \bullet^4$<br>$\bullet^3 -1, 3$                 |             |  |  |
|                                                                            |                                                                                                                                                                                                                                                                                                                                                                                |        | • <sup>4</sup> find <i>y</i> -coordinates           |            | • $\frac{8}{3}$ , -8                                       |             |  |  |
| Note                                                                       | s:                                                                                                                                                                                                                                                                                                                                                                             |        |                                                     |            |                                                            |             |  |  |
| 1. Fo<br>2. • <sup>2</sup><br>Ca<br>3. • <sup>3</sup><br>4. • <sup>3</sup> | <ol> <li>Notes:</li> <li>For a numerical approach, award 0/4.</li> <li>•<sup>2</sup> is only available if '= 0' appears at the •<sup>2</sup> stage or in working leading to •<sup>3</sup>. However, see Candidate A.</li> <li>•<sup>3</sup> is only available for solving a quadratic equation.</li> <li>•<sup>3</sup> and •<sup>4</sup> may be awarded vertically.</li> </ol> |        |                                                     |            |                                                            |             |  |  |
| Com                                                                        | monly                                                                                                                                                                                                                                                                                                                                                                          | v Obse | erved Responses:                                    |            |                                                            |             |  |  |
| Cano                                                                       | Iidate                                                                                                                                                                                                                                                                                                                                                                         | Δ      | •                                                   | Can        | didate B - derivative never equated t                      | 0.0         |  |  |
| Stati                                                                      | onary                                                                                                                                                                                                                                                                                                                                                                          | point  | s when $\frac{dy}{dx} = 0$                          | $x^2$      | $-2x-3$ $\bullet^1 \checkmark \bullet^2 \land$<br>+1)(x-3) | 00          |  |  |
| $\left  \frac{dy}{dx} \right  =$                                           | $x^{2}-2$                                                                                                                                                                                                                                                                                                                                                                      | 2x-3   | • <sup>1</sup> ✓ • <sup>2</sup> ✓                   | x =        | $-1, 3$ $\bullet^3 \checkmark_1$                           |             |  |  |
| $\left  \frac{dy}{dx} \right  =$                                           | ( <i>x</i> +1                                                                                                                                                                                                                                                                                                                                                                  | (x-1)  | 3)                                                  | <i>y</i> = | $\frac{6}{3}, -8$ $e^4 \checkmark$                         |             |  |  |
| <i>x</i> = -                                                               | -1, 3                                                                                                                                                                                                                                                                                                                                                                          |        | •3 🗸                                                |            |                                                            |             |  |  |
| $y = \frac{1}{2}$                                                          | $\frac{8}{3}, -8$                                                                                                                                                                                                                                                                                                                                                              | 1      | • <sup>4</sup> ✓                                    |            |                                                            |             |  |  |
|                                                                            | (b)                                                                                                                                                                                                                                                                                                                                                                            |        | • <sup>5</sup> evaluate y at $x = 6$                |            | ● <sup>5</sup> 19                                          | 2           |  |  |
|                                                                            |                                                                                                                                                                                                                                                                                                                                                                                |        | • <sup>6</sup> state greatest and least values      |            | • <sup>6</sup> greatest = 19 and least = -8                |             |  |  |
| Note                                                                       | s:                                                                                                                                                                                                                                                                                                                                                                             |        |                                                     |            |                                                            |             |  |  |
| 5. 'G                                                                      | <br>ireate                                                                                                                                                                                                                                                                                                                                                                     | st (6. | 19): least $(3, -8)$ ' does not gain •              | 6          |                                                            |             |  |  |
| 6 W                                                                        | here                                                                                                                                                                                                                                                                                                                                                                           | r = -  | 1 was not identified as a stationary                | ,<br>noi   | nt in part (a) y must also be evaluated                    | at          |  |  |
| 0. W                                                                       | o. Where $x = -1$ was not identified as a stationary point in part (a), y must also be evaluated at $x = -1$ to gain $\bullet^6$                                                                                                                                                                                                                                               |        |                                                     |            |                                                            |             |  |  |
| <b>7.</b> ● <sup>6</sup>                                                   | 7. • <sup>6</sup> is not available for using y at a value of x, obtained at • <sup>3</sup> stage, which lies outwith the interval                                                                                                                                                                                                                                              |        |                                                     |            |                                                            |             |  |  |
| _                                                                          | $-1 \le x \le 6$ .                                                                                                                                                                                                                                                                                                                                                             |        |                                                     |            |                                                            |             |  |  |
| 8. •⁰                                                                      | 8. $\bullet^6$ is only available where candidates have attempted to evaluate y at $x = 6$ .                                                                                                                                                                                                                                                                                    |        |                                                     |            |                                                            |             |  |  |
| Com                                                                        | monly                                                                                                                                                                                                                                                                                                                                                                          | 0bse   | erved Responses:                                    |            |                                                            |             |  |  |
|                                                                            |                                                                                                                                                                                                                                                                                                                                                                                |        |                                                     |            |                                                            |             |  |  |

| Q                 | uestic              | on             | Generic scheme                                              |                                   | Illustrative scheme                                                       | Max<br>mark            |  |  |
|-------------------|---------------------|----------------|-------------------------------------------------------------|-----------------------------------|---------------------------------------------------------------------------|------------------------|--|--|
| 10.               | (a)                 |                | • <sup>1</sup> state centre                                 |                                   | • <sup>1</sup> (-9,1)                                                     | 2                      |  |  |
|                   |                     |                | • <sup>2</sup> calculate radius                             |                                   | • <sup>2</sup> $\sqrt{90}$ or $3\sqrt{10}$ or 9.48                        |                        |  |  |
| Note              | Notes:              |                |                                                             |                                   |                                                                           |                        |  |  |
| 1. 4              | Accept              | x = -          | -9, $y = 1$ for • <sup>1</sup> .                            |                                   |                                                                           |                        |  |  |
| 2. [              | Do not              | accep          | ot ' $g = -9, f = 1$ ' or '-9,1' for • <sup>1</sup> .       |                                   |                                                                           |                        |  |  |
| 3. C              | Do not              | penal          | ise candidates who treat negative                           | sign                              | with a lack of rigour when calculating                                    | the                    |  |  |
| r                 | adius.              | For e          | xample accept $\sqrt{9^2 + -1^2 + 8} = \sqrt{9}$            | o or                              | $\sqrt{9^2 + 1^2 + 8} = \sqrt{90}$ or $\sqrt{-9^2 + 1^2 + 8} = \sqrt{90}$ | 90 for                 |  |  |
| •                 | <sup>2</sup> . Ho   | wever          | r, do not accept $\sqrt{9^2 - 1^2 + 8} = \sqrt{90}$         | for                               | • <sup>2</sup> .                                                          |                        |  |  |
| Com               | monly               | , Obse         | erved Responses:                                            |                                   |                                                                           |                        |  |  |
|                   |                     |                | •                                                           |                                   |                                                                           |                        |  |  |
|                   |                     |                |                                                             |                                   |                                                                           |                        |  |  |
|                   | (b)                 |                | • <sup>3</sup> determine the distance betwe                 | en                                | • <sup>3</sup> eg $\sqrt{90} - \sqrt{10}$                                 | 2                      |  |  |
|                   |                     |                | the centres and subtract to fir                             | nd a                              |                                                                           |                        |  |  |
|                   |                     |                | numerical expression for the                                |                                   |                                                                           |                        |  |  |
|                   |                     |                |                                                             |                                   |                                                                           |                        |  |  |
|                   |                     |                | $\bullet^4$ determine equation of $C_2$                     |                                   | • $(x+6)^2 + y^2 = 40$                                                    |                        |  |  |
| Note              | es:                 |                |                                                             |                                   |                                                                           |                        |  |  |
| 4. C              | Do not              | penal          | ise the use of decimals.                                    |                                   |                                                                           |                        |  |  |
| 5. 1              | The dis             | tance          | between the centres, and the rad                            | ius c                             | of $C_2$ must be consistent with the sizes $\alpha$                       | of the                 |  |  |
| 0                 | rcles               | in the         | e original diagram ( $d < r_{C_2} < r_{C_1}$ ).             |                                   |                                                                           |                        |  |  |
| 6. \              | Vhere               | a can          | didate uses an incorrect radius wit                         | hout                              | supporting working, $\bullet^4$ is not available.                         | ,                      |  |  |
| Com               |                     |                | mind Demonstration                                          |                                   |                                                                           |                        |  |  |
| Com               | moniy               | UDSE           | erved Responses:                                            | <b>C</b>                          | didata Pusing line through contract                                       |                        |  |  |
| Part              | (a)                 | A - 10         | bliow-through marking                                       | Car                               | Ididate B - using line through centres                                    |                        |  |  |
| r = -             | √ <u>74</u>         |                | • <sup>2</sup> ×                                            | Equation of radius: $3y = -x - 6$ |                                                                           |                        |  |  |
| Part              | (b)                 |                |                                                             | (-3                               | $(3y-6)^2 + y^2 + 18(-3y-6) - 2y - 8 = 0$                                 |                        |  |  |
| $d = \frac{1}{2}$ | √10<br>,            |                |                                                             | 10                                | $v^2 - 20v - 80 = 0$                                                      |                        |  |  |
| radi              | $us = \sqrt{2}$     | 74 – √         | √10 • <sup>3</sup> ✓ <sub>1</sub>                           |                                   | -1 = -2                                                                   |                        |  |  |
| (x+               | $6)^{2} + 2$        | $y^{2} = 5$    | .44 <sup>2</sup>                                            | ¥<br>  √∠                         | -18 - 0                                                                   |                        |  |  |
| (x+               | $(6)^{2} + (1)^{2}$ | $v^2 = 2^{-1}$ | 9.59 (or $84 - 4\sqrt{185}$ ) • <sup>4</sup> $\checkmark_1$ |                                   | $i \varphi = x - 0$                                                       | 2)                     |  |  |
|                   | , .                 |                | · · · ·                                                     | Rac                               | $\frac{1}{100} = \sqrt{40}$                                               | ⊆)<br>● <sup>3</sup> ✓ |  |  |
|                   |                     |                |                                                             | (r                                | $(+6)^2 + y^2 - 40$                                                       | 4                      |  |  |
|                   |                     |                |                                                             | (1)                               | (y) + y - 40                                                              | • •                    |  |  |

| Question                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n                                                | Generic scheme                                                      | Illustrative scheme                                                                                                                            | Max<br>mark |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|--|--|
| 11.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  | •1 state number of vehicles                                         | • <sup>1</sup> 6.8 million                                                                                                                     | 1           |  |  |  |  |
| Note                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | L                                                |                                                                     |                                                                                                                                                |             |  |  |  |  |
| 1. A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1. Accept 6.8 or $N = 6.8$ million for $\bullet^1$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |                                                                     |                                                                                                                                                |             |  |  |  |  |
| Com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Commonly Observed Responses:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                  |                                                                     |                                                                                                                                                |             |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                  |                                                                     |                                                                                                                                                |             |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  | • <sup>2</sup> substitute for $N$ and $t$                           | • <sup>2</sup> $125 = 6.8e^{10k}$<br>stated or implied by • <sup>3</sup>                                                                       | 4           |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                  | • <sup>3</sup> process equation                                     | • ${}^{3} \frac{125}{6.8} = e^{10k}$                                                                                                           |             |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                  | • <sup>4</sup> express in logarithmic form                          | • <sup>4</sup> $\log_e\left(\frac{125}{6.8}\right) = 10k$                                                                                      |             |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                  | • <sup>5</sup> solve for $k$                                        | • <sup>5</sup> 0.2911                                                                                                                          |             |  |  |  |  |
| Note                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | L                                                |                                                                     |                                                                                                                                                |             |  |  |  |  |
| <ol> <li>A</li> <li>C</li> <li>C</li> <li>C</li> <li>C</li> <li>A</li> <li>A</li></ol> | <ol> <li>Accept answers which round to 0.29.</li> <li>Do not penalise rounding or transcription errors (which are correct to 2 significant figures) in intermediate calculations.</li> <li>•<sup>3</sup> may be assumed by •<sup>4</sup>.</li> <li>Any base may be used at •<sup>4</sup> stage. See Candidate A.</li> <li>At •<sup>4</sup> all exponentials must be processed.</li> <li>Accept log<sub>e</sub> 125/6.8 = 10k log<sub>e</sub> e for •<sup>4</sup>.</li> <li>The calculation at •<sup>5</sup> must follow from the valid use of exponentials and logarithms at •<sup>3</sup> and •<sup>4</sup>.</li> <li>For candidates with no working, or who adopt an iterative approach to arrive at k = 0.29, award 1/4. However, if in the iterations N is calculated for k = 0.305, and k = 0.385, then award 4/4.</li> </ol> |                                                  |                                                                     |                                                                                                                                                |             |  |  |  |  |
| Com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | monly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <sup>,</sup> Obse                                | erved Responses:                                                    |                                                                                                                                                |             |  |  |  |  |
| Candidate A - use of alternative base<br>$125 = 6.8e^{10k}$ $e^2 \checkmark$<br>$\frac{125}{6.8} = e^{10k}$ $e^3 \checkmark$<br>$\log_{10}\left(\frac{125}{6.8}\right) = 10k \log_{10}e$ $e^4 \checkmark$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                  |                                                                     | Candidate B - missing lines of working<br>$25 = 6.8e^{10k}$ $\bullet^2 \checkmark$<br>$x = 0.2911$ $\bullet^3 \land \bullet^4 \land \bullet^5$ | (           |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                  |                                                                     |                                                                                                                                                |             |  |  |  |  |
| Canc<br>125(<br>125(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11date<br>000000<br>00000<br>6.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>C</b> - e<br>0 = 6.8<br>$\frac{0}{2} = e^{1}$ | rrors in substitution<br>$3e^{10k}$ $e^2 \times e^{3} \checkmark_1$ |                                                                                                                                                |             |  |  |  |  |
| 16.72<br>k = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 26 <i>=</i><br>.6726.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10 <i>k</i><br>                                  | • <sup>•</sup> <sup>•</sup> <sup>1</sup>                            |                                                                                                                                                |             |  |  |  |  |

| Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | uestic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | on     | Generic scheme                                                                   | Illustrative scheme                                                                           | Max<br>mark      |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------|--|--|
| 12.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        | <ul> <li><sup>1</sup> substitute appropriate double<br/>angle formula</li> </ul> | • <sup>1</sup> 2(2sin $x^{\circ}$ cos $x^{\circ}$ ) - sin <sup>2</sup> $x^{\circ}$ (=0)       | 5                |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        | • <sup>2</sup> factorise                                                         | • <sup>2</sup> $\sin x^{\circ} (4\cos x^{\circ} - \sin x^{\circ}) = 0$                        |                  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        | • <sup>3</sup> solve for $\tan x^{\circ}$                                        | • <sup>3</sup> $\tan x^\circ = 4$ (since $x = 90, 270$ are not solutions)                     |                  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        | • <sup>4</sup> solve $\tan x^\circ = 4$                                          | • <sup>4</sup> • <sup>5</sup><br>• <sup>4</sup> 76, 256                                       |                  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        | • <sup>5</sup> solve $\sin x^\circ = 0$                                          | • <sup>5</sup> 0, 180                                                                         |                  |  |  |
| Note                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | es:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |                                                                                  |                                                                                               |                  |  |  |
| <ol> <li>S</li> <li>S</li> <li>G</li> <li>A</li> <li>A</li> <li>C</li> <li>C</li> <li>S</li> <li>C</li> <li>S</li> <li>C</li> <li>S</li> <li>S</li></ol> | <ol> <li>•<sup>1</sup> is still available to candidates who correctly substitute for sin<sup>2</sup> x in addition to sin 2x.</li> <li>Substituting 2 sin A cos A for sin 2x° at the •<sup>1</sup> stage should be treated as bad form provided the equation is written in terms of x at the •<sup>2</sup> stage. Otherwise, •<sup>1</sup> is not available.</li> <li>'=0' must appear by the •<sup>2</sup> stage for •<sup>2</sup> to be awarded.</li> <li>Award •<sup>2</sup> for 'S(4C-S)=0' only where sin x°=0 and 4 cos x°-sin x°=0 appear.</li> <li>Do not penalise the omission of degree signs.</li> <li>At •<sup>3</sup> stage, candidates are not required to check that 90 and 270 are not solutions before dividing by cos x°. Where candidates have divided by sin x at the •<sup>2</sup> stage without considering sin x = 0, •<sup>3</sup> and •<sup>4</sup> are still available.</li> </ol> |        |                                                                                  |                                                                                               |                  |  |  |
| 7. A<br>€<br>8. ●                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>7. At •<sup>3</sup> stage, candidates may use the wave function and arrive at √17 cos(x+14)°=0, or an equivalent wave form, instead of tan x° = 4.</li> <li>8. •<sup>4</sup> is only available where the working at the •<sup>3</sup> stage is of equivalent difficulty to reaching tan x° = 4.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |                                                                                  |                                                                                               |                  |  |  |
| 9. •<br>10. F<br>11. •<br>12. C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9. • <sup>5</sup> is not available where $\sin x = 0$ comes from an invalid strategy.<br>10. For candidates who work only in radians, • <sup>5</sup> is not available.<br>11. • <sup>4</sup> and • <sup>5</sup> may be awarded vertically. See also Candidate B.<br>12. Do not penalise solutions outwith $0 \le x < 360$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |                                                                                  |                                                                                               |                  |  |  |
| Com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | monly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | / Obse | erved Responses:                                                                 |                                                                                               |                  |  |  |
| Cano<br>i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | lidate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A - v  | vorking in radians $\bullet^1 \checkmark \bullet^2 \checkmark$                   | Candidate B - partial solutions<br>2 $(2\sin x^{\circ}\cos x^{\circ}) - \sin^2 x^{\circ} = 0$ | • <sup>1</sup> 🗸 |  |  |

| :<br>$\tan x^{\circ} = 4$<br>1.326, 4.468 | $\bullet^1 \checkmark \bullet^2 \checkmark$<br>$\bullet^3 \checkmark$<br>$\bullet^4 \checkmark_1$ | $2(2\sin x^{\circ}\cos x^{\circ}) - \sin^{2} x^{\circ} = 0$<br>$\sin x^{\circ}(4\cos x^{\circ} - \sin x^{\circ}) = 0$<br>$\sin x^{\circ} = 0$ | • <sup>2</sup> ✓ | ● <sup>1</sup> ✓ |
|-------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|
| 0,π                                       | • <sup>5</sup> ✓ <sub>2</sub>                                                                     | $x = 180$ $\tan x^{\circ} = 4$ $x = 76$ $\mathbf{\bullet}^{5} \mathbf{\bullet}$                                                               | • <sup>3</sup> ✓ | • <sup>4</sup> ✓ |

| Question                                        |                    | n           | Generic scheme                                                 | Illustrative scheme                                                         | Max<br>mark      |  |
|-------------------------------------------------|--------------------|-------------|----------------------------------------------------------------|-----------------------------------------------------------------------------|------------------|--|
| 13.                                             |                    |             | • <sup>1</sup> state repeated factor                           | • $(x-3)^2()()$                                                             | 3                |  |
|                                                 |                    |             | • <sup>2</sup> state non-repeated linear facto                 | ors $e^{2} ()^{2} (x+1)(x-5)$                                               |                  |  |
|                                                 |                    |             | • <sup>3</sup> calculate <i>k</i> and express in required form | • <sup>3</sup> $f(x) = \frac{1}{5}(x-3)^2(x+1)(x-5)$                        |                  |  |
| Note                                            | s:                 |             |                                                                |                                                                             |                  |  |
| 1. Do                                           | not p              | enali       | se the omission of $f(x) =$ or the ir                          | clusion of $y = .$                                                          |                  |  |
| 2. Ac                                           | cept               | f(x)        | $=\frac{1}{5}(x+-3)^{2}(x+1)(x+-5) \text{ for } \bullet^{3}.$  |                                                                             |                  |  |
| Com                                             | monly              | Obse        | erved Responses:                                               |                                                                             |                  |  |
| Cand                                            | idate              | A - ir      | ncorrect signs                                                 | Candidate B - incorrect repeated root                                       |                  |  |
| f(x)                                            | )=k(.              | (x+3)       | $(x-1)(x+5)$ $\bullet^1 \times \bullet^2 \checkmark_1$         | $f(x) = k(x+1)^{2}(x-3)(x-5)$ • <sup>1</sup> * •                            | <sup>2</sup> 🗸 1 |  |
| f(x)                                            | $=\frac{1}{5}($    | (x+3)       | $(x-1)(x+5)$ $\bullet^3 \checkmark_1$                          | $f(x) = -\frac{3}{5}(x+1)^{2}(x-3)(x-5)$                                    |                  |  |
| Cand                                            | lidate             | C - ir      | correct repeated root                                          | Candidate D - incorrect signs and repeat                                    | ed root          |  |
| f(x)                                            | )=k(.              | $(x-5)^{2}$ | $(x+1)(x-3)$ $\bullet^{1} \times \bullet^{2} \checkmark_{1}$   | $f(x) = k(x+5)^{2}(x-1)(x+3)$ • <sup>1</sup> * •                            | <sup>2</sup> ×   |  |
| $f(x) = \frac{3}{25}(x-5)^2(x+1)(x-3)$          |                    |             |                                                                | $f(x) = \frac{3}{25}(x+5)^2(x-1)(x+3)$                                      |                  |  |
| Candidate E - incorrect signs and repeated root |                    |             | correct signs and repeated root                                | Candidate F - use of <i>a</i> , <i>b</i> and <i>c</i>                       |                  |  |
| f(x)                                            | )=k(.              | $(x-1)^2$   | $(x+5)(x+3)$ $\bullet^1 \times \bullet^2 \times$               | a = -3<br>$b = 1, c = -5$ (or $b = -5, c = 1$ ) • <sup>2</sup> $\checkmark$ | • <sup>1</sup> ✓ |  |
| f(x)                                            | $) = -\frac{3}{5}$ | (x-1)       | $)^{2}(x+5)(x+3)$ $\bullet^{3}$                                | $k = \frac{1}{5}$ • <sup>3</sup> •                                          |                  |  |

[END OF MARKING INSTRUCTIONS]